A091980 Recursive sequence; one more than maximum of products of pairs of previous terms with indices summing to current index.
1, 2, 3, 5, 7, 11, 16, 26, 36, 56, 81, 131, 183, 287, 417, 677, 937, 1457, 2107, 3407, 4759, 7463, 10843, 17603, 24373, 37913, 54838, 88688, 123892, 194300, 282310, 458330, 634350, 986390, 1426440, 2306540, 3221844, 5052452, 7340712, 11917232, 16500522
Offset: 1
References
- A. de Mier and M. Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, Graphs Combin., 28 (2012), 265-275.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5652
- F. Disanto and N. A. Rosenberg, Enumeration of ancestral configurations for matching gene trees and species trees, J. Comput. Biol. 24 (2017), 831-850. See Section 4.2.
- A. de Mier and M. Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, Elect. Notes Discr. Math 34 (2009) 489-493
- Eric Weisstein's World of Mathematics, Heap
- Wikipedia, Binary heap
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> 1+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n))) end: a:= n-> b(n-1): seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2019
-
Mathematica
a[n_] := a[n] = 1 + Max[Table[a[i] a[n-i], {i, n-1}]]; a[1] = 1; Array[a, 50] (* Jean-François Alcover, Apr 30 2020 *)
Formula
a(n) = 1 + max_{i=1..n-1} a(i)*a(n-i) for n > 1, a(1) = 1.
From Alois P. Heinz, Jul 09 2019: (Start)
a(n) = Sum_{k=0..n-1} A309049(n-1,k).
a(2^(n-1)) = A003095(n). (End)
Comments