A091991 Minimal number of 1's that must be inserted into the binary representation of n to get a prime.
1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 4, 0, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 3, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1, 3, 3, 0, 3, 0, 2, 1, 3, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 1, 1, 0, 2, 1, 2, 0, 3, 1, 1, 2, 2, 0, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 0, 2
Offset: 1
Keywords
Examples
n = 25->'11001': A000040(16)=53->'110[1]01', therefore a(25)=1; a(255)=a(2^8-1)=5, as 2^(8+5)-1=8191 is a Mersenne prime and 2^(8+i)-1 is not prime for i<5.
Links
Programs
-
PARI
insert1bit(n,pos) = (((n>>pos)<<(1+pos))+(1<
>=1;k++); k; }; A091991(n) = { if(1==n,return(1)); if(isprime(n),return(0)); if(!(n%2),return(1+A091991(1+n+n))); my(k,nexttries,prevtries = Set([n]), w = binwidth(n)-1); for(b=1,oo,nexttries = Set([]); for(t=1,length(prevtries), h = prevtries[t]; for(i=1,w,if(isprime(k=insert1bit(h,i)),return(b),nexttries = setunion(Set([k]),nexttries)))); prevtries = nexttries; w++);}; \\ Antti Karttunen, Dec 15 2017
Comments