A092028 a(n) is the smallest m > 1 such that m divides n^m-1.
2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, 3, 2, 53, 2, 5, 2, 3, 2, 59, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, 2, 71, 2, 73, 2
Offset: 3
Keywords
Examples
a(8)=7 because 7 divides 8^7-1 and there doesn't exist an m such that 1<m<7 and m divides 8^m-1.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 3..10000
Programs
-
Mathematica
a[n_] := (For[k=2, Mod[n^k-1, k]>0, k++ ];k);Table[a[n], {n, 3, 75}]
-
PARI
a(n)=if(n%2, return(2)); my(m=3); while(Mod(n,m)^m!=1, m+=2); m \\ Charles R Greathouse IV, May 29 2014
Formula
a[n_] := (For[k=2, Mod[n^k-1, k]>0, k++ ];k)
Comments