A092043 a(n) = numerator(n!/n^2).
1, 1, 2, 3, 24, 20, 720, 630, 4480, 36288, 3628800, 3326400, 479001600, 444787200, 5811886080, 81729648000, 20922789888000, 19760412672000, 6402373705728000, 6082255020441600, 115852476579840000, 2322315553259520000
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- A. N. Kirillov, Dilogarithm identities, arXiv:hep-th/9408113, 1994.
- Eric Weisstein's World of Mathematics, Dilogarithm
Programs
-
Magma
[Numerator(Factorial(n)/n^2): n in [1..30]]; // Vincenzo Librandi, Apr 15 2014
-
Mathematica
Table[Numerator[n!/n^2], {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *) Table[(n-1)!/n,{n,30}]//Numerator (* Harvey P. Dale, Apr 03 2018 *)
-
PARI
a(n)=numerator(n!/n^2)
-
PARI
a(n)=numerator(polcoeff(serlaplace(dilog(x)),n))
Formula
From Wolfdieter Lang, Apr 28 2017: (Start)
a(n) = numerator(n!/n^2) = numerator((n-1)!/n), n >= 1. See the name.
E.g.f. {a(n)/A014973(n)}_{n>=1} with 0 for n=0 is Li_2(x). See the comment.
(-1)^n*a(n+1)/A014973(n+1) = (-1)^n*n!/(n+1) = Sum_{k=0..n} Stirling1(n, k)*Bernoulli(k), with Stirling1 = A048994 and Bernoulli(k) = A027641(k)/A027642(k), n >= 0. From inverting the formula for B(k) in terms of Stirling2 = A048993.(End)
From Wolfdieter Lang, Oct 26 2022: (Start)
The expansion of (1+x)*exp(x) has coefficients A014973(n+1)/a(n+1), for n >= 0. (End)
Extensions
Comment rewritten by Wolfdieter Lang, Apr 28 2017
Comments