A092073 Boustrophedon transform (first version) of Fibonacci numbers 1, 1, 2, 3, 5, 8, ...
1, 2, 4, 10, 30, 101, 395, 1769, 9020, 51674, 328936, 2303323, 17595765, 145622477, 1297884212, 12393874652, 126242962310, 1366268975165, 15656289178423, 189374961382141, 2411196896699700, 32235328003898918, 451476237890591144, 6610630095177242675
Offset: 0
Keywords
Links
- C. A. Church and M. Bicknell, Exponential generating functions for Fibonacci identities, Fibonacci Quarterly, 11(3) (1973), 275-281.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Maple
read transforms; with(combinat, fibonacci): a := [seq(fibonacci(i),i=1..50)]: BOUS(a);
Formula
E.g.f.: (sec(x) + tan(x))*((exp(a*x) - exp(b*x))/(a - b) + 1), where a = (1 + sqrt(5))/2 and b = (1 - sqrt(5))/2. - Petros Hadjicostas, Feb 16 2021
Extensions
Entry revised by N. J. A. Sloane, Mar 16 2011