A000738
Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,...
Original entry on oeis.org
0, 1, 3, 8, 25, 85, 334, 1497, 7635, 43738, 278415, 1949531, 14893000, 123254221, 1098523231, 10490117340, 106851450165, 1156403632189, 13251409502982, 160286076269309, 2040825708462175, 27283829950774822, 382127363497453243, 5595206208670390323
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a000738 n = sum $ zipWith (*) (a109449_row n) a000045_list
-- Reinhard Zumkeller, Nov 03 2013
-
read(transforms);
with(combinat):
F:=fibonacci;
[seq(F(n),n=0..50)];
BOUS2(%);
-
FullSimplify[CoefficientList[Series[(2/Sqrt[5]) * E^(x/2) * (E^(Sqrt[5]/2*x)/2 - E^(-Sqrt[5]/2*x)/2) * (Sin[x]+1) / Cos[x], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec after Alois P. Heinz, Oct 05 2013 *)
t[n_, 0] := Fibonacci[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
from itertools import islice, accumulate
def A000738_gen(): # generator of terms
blist, a, b = tuple(), 0, 1
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
a, b = b, a+b
A000738_list = list(islice(A000738_gen(),30)) # Chai Wah Wu, Jun 11 2022
A000744
Boustrophedon transform (second version) of Fibonacci numbers 1,1,2,3,...
Original entry on oeis.org
1, 2, 5, 14, 42, 144, 563, 2526, 12877, 73778, 469616, 3288428, 25121097, 207902202, 1852961189, 17694468210, 180234349762, 1950592724756, 22352145975707, 270366543452702, 3442413745494957, 46021681757269830
Offset: 0
G.f. = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 144*x^5 + 563*x^6 + 2526*x^7 + ...
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a000744 n = sum $ zipWith (*) (a109449_row n) $ tail a000045_list
-- Reinhard Zumkeller, Nov 03 2013
-
read(transforms);
with(combinat):
F:=fibonacci;
[seq(F(n), n=1..50)];
BOUS2(%);
-
s[k_] := SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, k}] k!;
b[n_, k_] := Binomial[n, k] s[n - k];
a[n_] := Sum[b[n, k] Fibonacci[k + 1], {k, 0, n}];
Array[a, 22, 0] (* Jean-François Alcover, Jun 01 2019 *)
-
from itertools import accumulate, islice
def A000744_gen(): # generator of terms
blist, a, b = tuple(), 1, 1
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
a, b = b, a+b
A000744_list = list(islice(A000744_gen(),40)) # Chai Wah Wu, Jun 12 2022
A000687
Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,5,...
Original entry on oeis.org
1, 1, 2, 6, 17, 59, 229, 1029, 5242, 30040, 191201, 1338897, 10228097, 84647981, 754437958, 7204350870, 73382899597, 794189092567, 9100736472725, 110080467183393, 1401588037032782, 18737851806495008, 262435512896178877
Offset: 0
From _John Cerkan_, Jan 25 2017: (Start)
The array begins:
1
0 -> 1
2 <- 2 <- 1
1 -> 3 -> 5 -> 6
17 <- 16 <- 13 <- 8 <- 2 (End)
- John Cerkan, Table of n, a(n) for n = 0..482
- C. A. Church and M. Bicknell, Exponential generating functions for Fibonacci identities, Fibonacci Quarterly, 11(3) (1973), 275-281.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms
- Index entries for sequences related to boustrophedon transform
A092090
Boustrophedon transform of Fibonacci numbers 1, 2, 3, 5, 8, ...
Original entry on oeis.org
1, 3, 8, 22, 67, 229, 897, 4023, 20512, 117516, 748031, 5237959, 40014097, 331156423, 2951484420, 28184585550, 287085799927, 3106996356945, 35603555478689, 430652619722011, 5483239453957132, 73305511708044652, 1026690239891085363, 15033060056592047307
Offset: 0
- C. A. Church and M. Bicknell, Exponential generating functions for Fibonacci identities, Fibonacci Quarterly, 11(3) (1973), 275-281.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
-
read transforms; with(combinat, fibonacci): a := [seq(fibonacci(i),i=2..30)]: BOUS2(a);
-
from itertools import accumulate, islice
def A092090_gen(): # generator of terms
blist, a, b = tuple(), 1, 2
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1]
a, b = b, a+b
A092090_list = list(islice(A092090_gen(),40)) # Chai Wah Wu, Jun 12 2022
Showing 1-4 of 4 results.