A092090 Boustrophedon transform of Fibonacci numbers 1, 2, 3, 5, 8, ...
1, 3, 8, 22, 67, 229, 897, 4023, 20512, 117516, 748031, 5237959, 40014097, 331156423, 2951484420, 28184585550, 287085799927, 3106996356945, 35603555478689, 430652619722011, 5483239453957132, 73305511708044652, 1026690239891085363, 15033060056592047307
Offset: 0
Keywords
Links
- C. A. Church and M. Bicknell, Exponential generating functions for Fibonacci identities, Fibonacci Quarterly, 11(3) (1973), 275-281.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Maple
read transforms; with(combinat, fibonacci): a := [seq(fibonacci(i),i=2..30)]: BOUS2(a);
-
Python
from itertools import accumulate, islice def A092090_gen(): # generator of terms blist, a, b = tuple(), 1, 2 while True: yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1] a, b = b, a+b A092090_list = list(islice(A092090_gen(),40)) # Chai Wah Wu, Jun 12 2022
Formula
E.g.f.: (sec(x) + tan(x))*(a^2*exp(a*x) - b^2*exp(b*x))/(a - b), where a = (1 + sqrt(5))/2 and b = (1 - sqrt(5))/2. - Petros Hadjicostas, Feb 16 2021