cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092091 Molien series for 9-dimensional group of structure Z_2 X Z_2 and order 4, corresponding to complete weight enumerators of Hermitian self-dual GF(3)-linear codes over GF(9).

Original entry on oeis.org

1, 4, 17, 52, 147, 360, 819, 1712, 3382, 6312, 11286, 19368, 32154, 51744, 81114, 124080, 185823, 272844, 393679, 558844, 781781, 1078792, 1470261, 1980576, 2639676, 3482960, 4553212, 5900496, 7584516, 9674496, 12252036, 15410976, 19260813, 23926548, 29552733
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2004

Keywords

Crossrefs

Cf. A052365.

Programs

  • GAP
    List([0..40], n-> ((315*(857 +167*(-1)^n) +60*(8347 +581*(-1)^n)*n + (384718 +6930*(-1)^n)*n^2 +84*(2027 +5*(-1)^n)*n^3 +48888*n^4 +9240*n^5 +1092*n^6 +72*n^7 +2*n^8))/322560 ); # G. C. Greubel, Feb 02 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+3*x^2+x^3)/((1+x)^4*(1-x)^9) )); // G. C. Greubel, Feb 02 2020
    
  • Maple
    seq(coeff(series((1-x+3*x^2+x^3)/((1+x)^4*(1-x)^9), x, n+1), x, n), n = 0..40); # G. C. Greubel, Feb 02 2020
  • Mathematica
    LinearRecurrence[{5,-6,-10,29,-9,-36,36,9,-29,10,6,-5,1}, {1,4,17,52,147,360, 819,1712,3382,6312,11286,19368,32154}, 35] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    Vec((1 -x +3*x^2 +x^3)/((1-x)^9*(1+x)^4) + O(x^40)) \\ Colin Barker, Jan 16 2017
    
  • Sage
    def A092091_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x+3*x^2+x^3)/((1+x)^4*(1-x)^9) ).list()
    A092091_list(40) # G. C. Greubel, Feb 02 2020
    

Formula

G.f.: (1 +2*x^2 +4*x^3 +x^4)/((1-x)^4*(1-x^2)^5).
G.f.: (1 -x +3*x^2 +x^3)/( (1+x)^4*(1-x)^9 ). - R. J. Mathar, Dec 18 2014
a(n) = ((315*(857+167*(-1)^n) + 60*(8347+581*(-1)^n)*n + (384718+6930*(-1)^n)*n^2 + 84*(2027+5*(-1)^n)*n^3 + 48888*n^4 + 9240*n^5 + 1092*n^6 + 72*n^7 + 2*n^8)) / 322560. - Colin Barker, Jan 16 2017