A092091 Molien series for 9-dimensional group of structure Z_2 X Z_2 and order 4, corresponding to complete weight enumerators of Hermitian self-dual GF(3)-linear codes over GF(9).
1, 4, 17, 52, 147, 360, 819, 1712, 3382, 6312, 11286, 19368, 32154, 51744, 81114, 124080, 185823, 272844, 393679, 558844, 781781, 1078792, 1470261, 1980576, 2639676, 3482960, 4553212, 5900496, 7584516, 9674496, 12252036, 15410976, 19260813, 23926548, 29552733
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-10,29,-9,-36,36,9,-29,10,6,-5,1).
Crossrefs
Cf. A052365.
Programs
-
GAP
List([0..40], n-> ((315*(857 +167*(-1)^n) +60*(8347 +581*(-1)^n)*n + (384718 +6930*(-1)^n)*n^2 +84*(2027 +5*(-1)^n)*n^3 +48888*n^4 +9240*n^5 +1092*n^6 +72*n^7 +2*n^8))/322560 ); # G. C. Greubel, Feb 02 2020
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+3*x^2+x^3)/((1+x)^4*(1-x)^9) )); // G. C. Greubel, Feb 02 2020 -
Maple
seq(coeff(series((1-x+3*x^2+x^3)/((1+x)^4*(1-x)^9), x, n+1), x, n), n = 0..40); # G. C. Greubel, Feb 02 2020
-
Mathematica
LinearRecurrence[{5,-6,-10,29,-9,-36,36,9,-29,10,6,-5,1}, {1,4,17,52,147,360, 819,1712,3382,6312,11286,19368,32154}, 35] (* Ray Chandler, Jul 15 2015 *)
-
PARI
Vec((1 -x +3*x^2 +x^3)/((1-x)^9*(1+x)^4) + O(x^40)) \\ Colin Barker, Jan 16 2017
-
Sage
def A092091_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x+3*x^2+x^3)/((1+x)^4*(1-x)^9) ).list() A092091_list(40) # G. C. Greubel, Feb 02 2020
Formula
G.f.: (1 +2*x^2 +4*x^3 +x^4)/((1-x)^4*(1-x^2)^5).
G.f.: (1 -x +3*x^2 +x^3)/( (1+x)^4*(1-x)^9 ). - R. J. Mathar, Dec 18 2014
a(n) = ((315*(857+167*(-1)^n) + 60*(8347+581*(-1)^n)*n + (384718+6930*(-1)^n)*n^2 + 84*(2027+5*(-1)^n)*n^3 + 48888*n^4 + 9240*n^5 + 1092*n^6 + 72*n^7 + 2*n^8)) / 322560. - Colin Barker, Jan 16 2017