cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092118 Biperiod squares: square numbers whose digits repeat twice in order.

Original entry on oeis.org

1322314049613223140496, 2066115702520661157025, 2975206611629752066116, 4049586776940495867769, 5289256198452892561984, 6694214876166942148761, 8264462810082644628100, 183673469387755102041183673469387755102041
Offset: 1

Views

Author

Michael Mark, Dec 15 2004

Keywords

References

  • Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
  • R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.

Crossrefs

Programs

  • Maple
    f:=proc(n) local i,j,k; i:=cat(n,n); j:=convert(i,decimal,10); issqr(j); end;
    with(numtheory): Digits:=50:for d from 1 to 22 do tendp1:=10^d+1: tendp1fact:=ifactors(tendp1)[2]: n:=mul(piecewise(tendp1fact[i][2] mod 2=1,tendp1fact[i][1],1),i=1..nops(tendp1fact)):for i from ceil(sqrt((10^(d-1))/n)) to floor(sqrt((10^d-1)/n)) do printf("%d, ",tendp1*n*i^2) od: od: # C. Ronaldo
  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A092118_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            ab, aa = a*b, a*(a-1)
            for k in sorted(sqrt_mod(0,a,all_roots=True)):
                if ab <= (m:=k**2) < aa:
                    yield m
    A092118_list = list(islice(A092118_gen(),10)) # Chai Wah Wu, Mar 06 2024

Extensions

Corrected and extended by C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 15 2005
Definition corrected and improved, reference and cross-reference added by William Rex Marshall, Nov 12 2010
Keyword base added by William Rex Marshall, Nov 12 2010