A092130 Number of partitions of n into distinct parts == 1 (mod 3), with 1 as the smallest part.
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 4, 3, 1, 4, 4, 2, 5, 5, 2, 5, 7, 3, 6, 8, 4, 6, 10, 6, 7, 12, 7, 8, 14, 10, 9, 16, 12, 10, 19, 16, 12, 21, 19, 14, 24, 24, 17, 27, 28, 20, 31, 35, 24, 34, 40, 29, 39, 48, 35
Offset: 1
Keywords
Examples
For a(24), we have 19+4+1, 16+7+1, 13+10+1, so a(24)=3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A027349.
Programs
-
Maple
g:=x*product(1+x^(1+3*k),k=1..25): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Apr 18 2006 # second Maple program b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, b(n, i-3)+`if`(i>n, 0, b(n-i, i-3)))) end: a:= n-> b(n-1, iquo(n, 3)*3+1): seq (a(n), n=1..100); # Alois P. Heinz, May 01 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<2, 0, b[n, i-3] + If[i>n, 0, b[n-i, i-3]]]]; a[n_] := b[n-1, Quotient[n, 3]*3+1]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
-
PARI
for(i=0,50,print1(","polcoeff(prod(k=1,50,(1+x^(3*k+1))),i)))
Formula
G.f.: x*Product_{k>=1} (1+x^(1+3k)). - Emeric Deutsch, Apr 18 2006
a(n) ~ exp(Pi*sqrt(n)/3) / (2^(7/3) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
G.f.: Sum_{k>=1} x^(k*(3*k - 1)/2) / Product_{j=1..k-1} (1 - x^(3*j)). - Ilya Gutkovskiy, Nov 28 2020
Comments