A092145 Numerator of I(n) = 2*(Integral_{x=0..1/2} (1+x^2)^n dx).
1, 13, 283, 8667, 342969, 16671885, 962672355, 64467073755, 4917699360945, 421377918441165, 40104072098340075, 4200511400073848475, 480454695780380469225, 59617988532820945752525, 7980059238850231812954675, 1146519564522299271411982875
Offset: 0
Examples
I(3) = 8667/6720.
Links
- Robert Israel, Table of n, a(n) for n = 0..324
Crossrefs
Cf. A034910.
Programs
-
Magma
[Numerator(&+[Binomial(n,k)/(4^k*(2*k+1)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 05 2024
-
Maple
f:= n -> simplify(hypergeom([1/2, -n], [3/2], -1/4)*(2*n+2)!*2^(n-1)/(n+1)!): map(f, [$0..20]); # Robert Israel, Nov 07 2016
-
Mathematica
a[n_]:= (2^(1+3*n)*Gamma[3/2+n]*Hypergeometric2F1[-n,1/2,3/2,-1/4] )/Sqrt[Pi]; Table[a[n], {n, 0, 20}] (* Gerry Martens, Aug 09 2015 *)
-
SageMath
[numerator(sum(binomial(n,k)/(4^k*(2*k+1)) for k in range(n+1))) for n in range(31)] # G. C. Greubel, Feb 05 2024
Formula
a(n) = (2^(3*n+1)*Gamma(n+3/2)/sqrt(Pi))*Hypergeometric2F1([-n, 1/2], [3/2], -1/4). - Gerry Martens, Aug 09 2015
a(n) = Sum_{k=0..n} binomial(n,k)/(4^k*(2*k+1)). - G. C. Greubel, Feb 05 2024
a(n) ~ 2^(n + 1/2) * 5^(n+1) * n^n / exp(n). - Vaclav Kotesovec, Feb 05 2024
Extensions
More terms from Alois P. Heinz, Aug 09 2015
Comments