cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092182 Figurate numbers based on the 600-cell (4-D polytope with Schlaefli symbol {3,3,5}).

Original entry on oeis.org

1, 120, 947, 3652, 9985, 22276, 43435, 76952, 126897, 197920, 295251, 424700, 592657, 806092, 1072555, 1400176, 1797665, 2274312, 2839987, 3505140, 4280801, 5178580, 6210667, 7389832, 8729425, 10243376, 11946195, 13852972, 15979377
Offset: 1

Views

Author

Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004

Keywords

Comments

This is the 4-dimensional regular convex polytope called the 600-cell, hexacosichoron or hypericosahedron.

Examples

			a(3)= 3*((145*3^3)-(280*3^2)+(179*3)-38)/6 = 3*(3915-2520+537-38)/6 = 0.5*1894 = 947
		

Crossrefs

Programs

  • Magma
    [n*((145*n^3)-(280*n^2)+(179*n)-38)/6: n in [1..40]]; // Vincenzo Librandi, May 22 2011
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,120,947,3652,9985},30] (* Harvey P. Dale, May 04 2024 *)

Formula

a(n) = n*((145*n^3)-(280*n^2)+(179*n)-38)/6
a(n) = C(n+3,4) + 115 C(n+2,4) + 357 C(n+1,4) + 107 C(n,4)
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+115*x+357*x^2+107*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]