cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092183 Figurate numbers based on the 120-cell (4-D polytope with Schlaefli symbol {5,3,3}).

Original entry on oeis.org

1, 600, 4983, 19468, 53505, 119676, 233695, 414408, 683793, 1066960, 1592151, 2290740, 3197233, 4349268, 5787615, 7556176, 9701985, 12275208, 15329143, 18920220, 23108001, 27955180, 33527583, 39894168, 47127025, 55301376
Offset: 1

Views

Author

Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004

Keywords

Comments

This is the 4-dimensional regular convex polytope called the 120-cell, hecatonicosachoron or hyperdodecahedron.

Examples

			a(3) = 3*((261*3^3)-(504*3^2)+(283*3)-38)/2 = 3*(7047-4536+849-38)/2 = 1.5*3322 = 4983
		

Crossrefs

Programs

  • Magma
    [n*((261*n^3)-(504*n^2)+(283*n)-38)/2: n in [1..40]]; // Vincenzo Librandi, May 22 2011
    
  • Mathematica
    Table[SeriesCoefficient[x (1 + 595 x + 1993 x^2 + 543 x^3)/(1 - x)^5, {x, 0, n}], {n, 26}] (* Michael De Vlieger, Dec 14 2015 *)
  • PARI
    a(n) = n*(261*n^3 - 504*n^2 + 283*n - 38)/2; \\ Michel Marcus, Dec 14 2015

Formula

a(n) = n*((261*n^3)-(504*n^2)+(283*n)-38)/2.
a(n) = C(n+3,4) + 595 C(n+2,4) + 1993 C(n+1,4) + 543 C(n,4).
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+595*x+1993*x^2+543*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]