A092193 Number of generations for which prime(n) divides A001008(k) for some k.
4, 3, 7, 30, 3, 3, 8, 3, 5, 7, 4, 3, 5, 7, 6, 7, 4, 3, 8, 3, 3, 339, 4, 11, 10, 14, 3, 47, 3, 146, 4, 8, 3, 3, 4, 3, 20, 49, 33, 3, 6, 3, 3, 11, 5, 12, 3, 6, 17, 21, 3, 3, 3, 5, 3, 20, 18, 3, 3, 14, 3, 3, 3, 11, 3, 3, 3, 10, 3, 6, 35, 8, 4, 13, 11, 8, 1815, 5, 4, 52, 5, 3, 30, 11, 3, 3, 36, 3, 4, 3, 3, 3, 3, 3, 3, 4, 61, 4, 3, 3, 3, 3, 3, 8, 28, 4, 3, 6, 4, 6, 21, 19, 3, 94
Offset: 2
Keywords
Examples
a(4)=7 because the fourth prime, 7, divides A001008(k) for k = 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735 and 102728. These values of k fall into 6 generations; adding the zeroth generation makes a total of 7 generations.
Links
- Max Alekseyev, Table of n, a(n) for n = 2..220
- David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302. [WARNING: Table 2 contains miscalculations for p=19, 47, 59, ... - _Max Alekseyev_, Apr 01 2025]
- Leonardo Carofiglio, Giacomo Cherubini, and Alessandro Gambini, On Eswarathasan--Levine and Boyd's conjectures for harmonic numbers, arXiv:2503.15714 [math.NT], 2025.
- A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
Crossrefs
Extensions
a(8), a(15), a(17) corrected, and terms a(23) onward from Carofiglio et al. (2025) added by Max Alekseyev, Apr 01 2025
Comments