A092194 Primes p that divide A001008(k), the numerator of the k-th harmonic number H(k), for some k < p-1.
11, 29, 37, 43, 53, 61, 97, 109, 137, 173, 199, 227, 257, 269, 271, 313, 347, 353, 379, 397, 401, 409, 421, 433, 439, 509, 521, 577, 599, 601, 617, 641, 643, 647, 659, 677, 733, 761, 773, 809, 821, 827, 839, 863, 911, 919, 929, 937, 941, 947, 953, 971, 1009
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..2500
- Eric Weisstein's World of Mathematics, Harmonic Number
- Eric Weisstein's World of Mathematics, Irregular Prime
- Wikipedia, Regular prime
Programs
-
Maple
A1008:= 1: h:= 1: for n from 2 to 10000 do h:= h+1/n; A1008:= A1008, numer(h) od: A1008:= [A1008]: filter:= proc(p) ormap(i -> A1008[i] mod p = 0, [$1..p-2]) end proc: select(filter, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Jan 20 2025
-
Mathematica
n=2; Table[cnt=0; While[cnt==0, p=Prime[n]; k=1; h=0; While[cnt==0 && k<=(p-1)/2, h=h+1/k; If[Mod[Numerator[h], p]==0, cnt++ ]; k++ ]; n++ ]; p, {100}]
Comments