A092202 Expansion of (x - x^3) / (1 - x^5) in powers of x.
0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0
Offset: 0
Examples
x - x^3 + x^6 - x^8 + x^11 - x^13 + x^16 - x^18 + x^21 - x^23 + x^26 + ...
Links
- M. E. Muldoon and A. A. Ungar, Beyond Sin and Cos, Mathematics Magazine, 69,1,(1996).
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1).
Programs
-
Mathematica
LinearRecurrence[{-1,-1,-1,-1},{0,1,0,-1},120] (* Harvey P. Dale, Jan 14 2022 *)
-
PARI
{a(n) = (n%5 == 1) - (n%5 == 3)} /* Michael Somos, Mar 26 2012 */
Formula
E.g.f. : F(1, 5, 1, x)-F(1, 5, 3, x);
a(n) = Sum{k=0..n} Jacobi(k, 5).
Euler transform of length 5 sequence [ 0, -1, 0, 0, 1]. - Michael Somos, Mar 26 2012
G.f.: (x + x^2) / (1 + x + x^2 + x^3 + x^4).
a(n) = a(n + 5). a(-1 - n) = -a(n). a(5*n) = a(5*n + 2) = a(5*n+4) = 0. a(5*n + 1) = 1. a(5*n + 3) = -1. - Michael Somos, Mar 26 2012
Comments