A092210 Positive integers n such that the trajectory of n under the Reverse and Add! operation carried out in base 2 (presumably) does not join the trajectory of any m < n.
1, 16, 64, 74, 98, 107, 259, 266, 271, 275, 298, 398, 442, 454, 522, 794, 911, 1027, 1046, 1057, 1066, 1070, 1073, 1076, 1081, 1082, 1085, 1115, 1274, 1422, 1562, 1570, 1967, 2070, 2329, 3106, 3355, 3871, 4099, 4114, 4120, 4126, 4136, 4152, 4182, 4189
Offset: 1
Examples
The trajectory of 2 is part of the trajectory of 1 (cf. A035522); the trajectory of 16 does not join the trajectory of 1 within 10000 steps; the trajectory of 64 does not join the trajectory of 1 or of 16 within 10000 steps.
Programs
-
Mathematica
limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *) utraj = NestList[# + IntegerReverse[#, 2] &, 1, limit]; Flatten@{1, Select[Range[2, 4189], (l = Length@NestWhileList[# + IntegerReverse[#, 2] &, #, ! MemberQ[utraj, #] &, 1, limit]; utraj = Union[utraj, NestList[# + IntegerReverse[#, 2] &, #, limit]]; l == limit + 1) &]} (* Robert Price, Nov 03 2019 *)
Comments