A092212 a(n) = smallest non-palindromic k such that the base-2 Reverse and Add! trajectory of k is palindrome-free and joins the trajectory of A092210(n).
26, 65649, 89, 4193, 3599, 775, 68076, 2173
Offset: 1
Examples
A092210(3) = 64, the trajectory of 64 joins the trajectory of 89 at 48480, so a(3) = 89. A092210(5) = 98, the trajectory of 98 joins the trajectory of 3599 = A075252(16) at 401104704, so a(5) = 3599.
Programs
-
Mathematica
limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *) utraj = NestList[# + IntegerReverse[#, 2] &, 1, limit]; A092210 = Flatten@{1, Select[Range[2, 266], (l = Length@NestWhileList[# + IntegerReverse[#, 2] &, #, ! MemberQ[utraj, #] &, 1, limit]; utraj = Union[utraj, NestList[# + IntegerReverse[#, 2] &, #, limit]]; l == limit + 1) &]}; A092212 = {}; For[i = 1, i <= Length@A092210, i++, k = A092210[[i]]; itraj = NestList[# + IntegerReverse[#, 2] &, A092210[[i]], limit]; While[ktraj = NestWhileList[# + IntegerReverse[#, 2] &, k, # != IntegerReverse[#, 2] &, 1, limit]; PalindromeQ[k] || Length@ktraj != limit + 1 || ! IntersectingQ[itraj, ktraj], k++]; AppendTo[A092212, k]]; A092212 (* Robert Price, Nov 03 2019 *)
Extensions
a(1) and a(3) corrected by Robert Price, Nov 06 2019
Comments