cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092217 Primes that do not divide any Euler number.

Original entry on oeis.org

2, 3, 7, 11, 23, 59, 83, 103, 107, 127, 131, 151, 163, 167, 179, 191, 199, 211, 227, 239, 271, 283, 331, 347, 367, 383, 431, 439, 443, 467, 479, 487, 499, 503, 523, 547, 599, 607, 631, 643, 647, 659, 683, 719, 727, 743, 787, 823, 827, 839, 859, 863, 883, 911
Offset: 1

Views

Author

T. D. Noe, Feb 25 2004

Keywords

Comments

After computing the Euler numbers, finding the non-divisors is simple because the Euler numbers satisfy a Kummer congruence. See Wagstaff for details. The density of these primes is approximately 0.33.

Crossrefs

Cf. A000364 (Euler numbers), A092218 (primes that divide some Euler number), A092219.

Programs

  • Mathematica
    ee=Table[Abs[EulerE[2i]], {i, 1000}]; t=Table[p=Prime[n]; cnt=0; Do[If[Mod[ee[[i]], p]==0, cnt++ ], {i, p}]; cnt, {n, PrimePi[1000]}]; Prime[Flatten[Position[t, 0]]]

A092218 Primes that divide some Euler number.

Original entry on oeis.org

5, 13, 17, 19, 29, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 89, 97, 101, 109, 113, 137, 139, 149, 157, 173, 181, 193, 197, 223, 229, 233, 241, 251, 257, 263, 269, 277, 281, 293, 307, 311, 313, 317, 337, 349, 353, 359, 373, 379, 389, 397, 401, 409, 419, 421
Offset: 1

Views

Author

T. D. Noe, Feb 25 2004

Keywords

Comments

For a prime p in this sequence, p will divide an Euler number E(k) for k < p. The density of these primes is approximately 0.66.
This sequence is the union of A002144 (primes of the form 4k+1) and A120115. Note that if prime p=1 (mod 4), then p divides E(p-1). - T. D. Noe, Jun 09 2006

Crossrefs

Cf. A000364 (Euler numbers), A092217 (primes that do not divide any Euler number), A092219.

Programs

  • Mathematica
    ee=Table[Abs[EulerE[2i]], {i, 500}]; t=Table[p=Prime[n]; cnt=0; Do[If[Mod[ee[[i]], p]==0, cnt++ ], {i, p}]; cnt, {n, PrimePi[500]}]; Prime[Select[Range[Length[t]], t[[ # ]]>0&]]
Showing 1-2 of 2 results.