A092242 Numbers that are congruent to {5, 7} (mod 12).
5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 101, 103, 113, 115, 125, 127, 137, 139, 149, 151, 161, 163, 173, 175, 185, 187, 197, 199, 209, 211, 221, 223, 233, 235, 245, 247, 257, 259, 269, 271, 281, 283, 293, 295, 305, 307, 317, 319, 329, 331
Offset: 1
References
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 64.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Select[Range[331], MemberQ[{5, 7}, Mod[#, 12]] &] (* Amiram Eldar, Dec 04 2021 *)
Formula
1/5^2 + 1/7^2 + 1/17^2 + 1/19^2 + 1/29^2 + 1/31^2 + ... = Pi^2*(2 - sqrt(3))/36 = 0.073459792... [Jolley] - Gary W. Adamson, Dec 20 2006
a(n) = 12*n - a(n-1) - 12 (with a(1)=5). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 6*n - 3 - 2*(-1)^n.
G.f.: x*(5+2*x+5*x^2) / ( (1+x)*(x-1)^2 ). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2 - sqrt(3))*Pi/12. - Amiram Eldar, Dec 04 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/12) (A120683).
Extensions
Edited and extended by Ray Chandler, Feb 21 2004