cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092242 Numbers that are congruent to {5, 7} (mod 12).

Original entry on oeis.org

5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 101, 103, 113, 115, 125, 127, 137, 139, 149, 151, 161, 163, 173, 175, 185, 187, 197, 199, 209, 211, 221, 223, 233, 235, 245, 247, 257, 259, 269, 271, 281, 283, 293, 295, 305, 307, 317, 319, 329, 331
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 19 2004

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 64.

Crossrefs

Fifth row of A092260.

Programs

  • Mathematica
    Select[Range[331], MemberQ[{5, 7}, Mod[#, 12]] &] (* Amiram Eldar, Dec 04 2021 *)

Formula

1/5^2 + 1/7^2 + 1/17^2 + 1/19^2 + 1/29^2 + 1/31^2 + ... = Pi^2*(2 - sqrt(3))/36 = 0.073459792... [Jolley] - Gary W. Adamson, Dec 20 2006
a(n) = 12*n - a(n-1) - 12 (with a(1)=5). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 6*n - 3 - 2*(-1)^n.
G.f.: x*(5+2*x+5*x^2) / ( (1+x)*(x-1)^2 ). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2 - sqrt(3))*Pi/12. - Amiram Eldar, Dec 04 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/12) (A120683).
Product_{n>=1} (1 + (-1)^n/a(n)) = (sqrt(3)/2)*sec(Pi/12) (= A010527 * A120683). (End)

Extensions

Edited and extended by Ray Chandler, Feb 21 2004