cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092255 a(0) = 1; for n > 0, a(n) = b(n) - n*b(n-1), b() = A076177().

Original entry on oeis.org

1, 1, 3, 10, 23, 66, 222, 561, 1647, 5410, 14318, 42351, 137018, 372191, 1105275, 3537540, 9772767, 29090826, 92364198, 258208671, 769820418, 2429091885, 6850744365, 20447143866, 64200928194, 182303186391, 544550917797, 1702925802766, 4861918919447
Offset: 0

Views

Author

N. J. A. Sloane, Feb 20 2004

Keywords

Comments

For n>=1, a(n) mod 2 = A010060(n) the Thue-Morse sequence - Benoit Cloitre, Mar 22 2004
Number of ternary words of length n in which count(0's) <= count(1's) <= count(2's). a(2) = 3: words 12 and 21 with counts (0,1,1) and 22 with counts (0,0,2). - David Scambler, Aug 06 2012

Crossrefs

Column k=3 of A226873. - Alois P. Heinz, Jun 21 2013

Programs

  • Maple
    a:= n-> n! *add(add(1/(k!*j!*(n-k-j)!), j=k..(n-k)/2), k=0..n/3):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 07 2012
  • Mathematica
    CoefficientList[Series[(HypergeometricPFQ[{},{},x]^3 + 3*HypergeometricPFQ[{},{},x]*HypergeometricPFQ[{},{1},x^2] + 2*HypergeometricPFQ[{},{1,1},x^3])/6,{x,0,30}],x]*Range[0,30]! (* Vaclav Kotesovec, Jul 01 2013 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,i,sum(k=0,j,if(i+j+k-n,0,n!/i!/j!/k!))))

Formula

a(n) = n!*sum(i+j+k=n, 1/(i!*j!*k!)) (0<=k<=j<=i<=n). - Benoit Cloitre, Mar 22 2004
Recurrence: (n-3)*(n-1)*n^2*(63*n^3-561*n^2+1556*n-1343)*a(n) = (n-1)^2*(315*n^5 - 4065*n^4 + 19720*n^3 - 44240*n^2 + 44790*n - 15768)*a(n-1) - 3*(63*n^4 - 813*n^3 + 3392*n^2 - 5091*n + 2241)*(n-2)^3*a(n-2) + 9*(n-3)*(126*n^5 - 1311*n^4 + 4801*n^3 - 7677*n^2 + 5409*n - 1464)*(n-2)*a(n-3) - 27*(n-3)*(315*n^5 - 4065*n^4 + 19720*n^3 - 44240*n^2 + 44790*n - 15768)*(n-2)*a(n-4) + 81*(n-4)*(n-3)*(63*n^4 - 813*n^3 + 3392*n^2 - 5091*n + 2241)*(n-2)*a(n-5) + 243*(n-5)*(n-4)*(n-3)*(63*n^3-372*n^2+623*n-285)*(n-2)*a(n-6). - Vaclav Kotesovec, Jun 30 2013
a(n) ~ 1/2 * 3^(n-1) * (1 + 3/(2*sqrt(Pi*n/3)) + sqrt(3)*(1+2*cos(2*Pi*n/3))/(Pi*n)). - Vaclav Kotesovec, Mar 07 2014

Extensions

More terms from Benoit Cloitre, Mar 22 2004