cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092264 a(n)*a(n-5) = a(n-1)*a(n-4)+a(n-2)+a(n-3), with initial terms a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 9, 17, 65, 117, 227, 449, 1737, 3137, 6105, 12097, 46819, 84565, 164593, 326161, 1262361, 2280101, 4437891, 8794241, 34036913, 61478145, 119658449, 237118337, 917734275, 1657629797, 3226340217, 6393400849
Offset: 1

Views

Author

Paul Heideman (ppheideman(AT)wisc.edu), Feb 19 2004

Keywords

Crossrefs

Programs

  • Maple
    R := proc(n) option remember; if n<5 then 1 else RETURN((R(n-1)*R(n-4)+R(n-2)+R(n-3))/R(n-5)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==1,a[n]==(a[n-1]a[n-4]+a[n-2]+a[n-3])/a[n-5]},a,{n,40}] (* or *) LinearRecurrence[ {0,0,0,28,0,0,0,-28,0,0,0,1},{1,1,1,1,1,3,5,9,17,65,117,227},40] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(k=5, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 -27*x^4 -25*x^5 -23*x^6 -19*x^7 +17*x^8 +9*x^9 +5*x^10 +3*x^11) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +5*x^2 -x^4)*(1 -5*x^2 -x^4)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=3, a(7)=5, a(8)=9, a(9)=17, a(10)=65, a(11)=117, a(12)=227, a(n)=28*a(n-4)-28*a(n-8)+a(n-12). - Harvey P. Dale, Aug 08 2013
G.f.: x*(1 +x +x^2 +x^3 -27*x^4 -25*x^5 -23*x^6 -19*x^7 +17*x^8 +9*x^9 +5*x^10 +3*x^11) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +5*x^2 -x^4)*(1 -5*x^2 -x^4)). - Colin Barker, Jul 18 2016