cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092265 Sum of smallest parts of all partitions of n into distinct parts.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 14, 16, 23, 26, 34, 40, 50, 58, 74, 83, 102, 120, 142, 164, 198, 226, 266, 308, 359, 412, 482, 548, 634, 730, 834, 950, 1094, 1240, 1416, 1609, 1826, 2068, 2350, 2648, 2994, 3382, 3806, 4280, 4826, 5408, 6070, 6806, 7619, 8522, 9534, 10632
Offset: 1

Views

Author

Vladeta Jovovic, Feb 14 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n,i+1)+b(n-i, i+1)))
        end:
    a:= n-> add(j*b(n-j, j+1), j=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 03 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i + 1] + b[n - i, i + 1]]]; a[n_] := Sum[j*b[n - j, j + 1], {j, 1, n}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{n >= 1} (-1 + Product_{k >= n} 1 + x^k).
G.f.: Sum_{n >= 1} n*x^n*Product_{k >= n+1} (1 + x^k). - Joerg Arndt, Jan 29 2011
G.f.: Sum_{k >= 1} x^(k*(k+1)/2)/(1 - x^k)/Product_{i = 1..k} (1 - x^i). - Vladeta Jovovic, Aug 10 2004
Conjecture: a(n) = A034296(n) + A237665(n+1). - George Beck, May 06 2017
a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 20 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004