cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092268 Total number of smallest parts in all partitions of n into odd parts.

Original entry on oeis.org

1, 2, 4, 5, 8, 12, 15, 20, 29, 36, 46, 61, 74, 95, 122, 145, 180, 224, 268, 328, 399, 474, 567, 682, 807, 955, 1136, 1330, 1564, 1842, 2140, 2499, 2914, 3375, 3917, 4533, 5220, 6014, 6929, 7942, 9102, 10430, 11898, 13582, 15489, 17600, 19999, 22706, 25719
Offset: 1

Views

Author

Vladeta Jovovic, Feb 16 2004

Keywords

Examples

			Partitions of 6 into odd parts are: [1,1,1,1,1,1], [1,1,1,3], [3,3], [1,5]; thus a(6)=6+3+2+1=12.
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[Sum[(x^(2*n - 1)/(1 - x^(2*n - 1))) / Product[(1 - x^(2*k - 1)), {k, n, nmax}], {n, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 06 2019 *)

Formula

G.f.: Sum((x^(2*n-1)/(1-x^(2*n-1)))/Product((1-x^(2*k-1)), k=n..infinity), n=1..infinity).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)). - Vaclav Kotesovec, Jul 07 2019

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004