A092271 Triangle read by rows. First in a series of triangular arrays counting permutations of partitions.
1, 1, 1, 2, 3, 1, 6, 8, 6, 1, 24, 30, 20, 10, 1, 120, 144, 90, 40, 15, 1, 720, 840, 504, 210, 70, 21, 1, 5040, 5760, 3360, 1344, 420, 112, 28, 1, 40320, 45360, 25920, 10080, 3024, 756, 168, 36, 1, 362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45, 1, 3628800, 3991680, 2217600, 831600, 237600, 55440, 11088, 1980, 330, 55, 1
Offset: 1
Examples
The triangle begins: 1: 1 2: 1 1 3: 2 3 1 4: 6 8 6 1 5: 24 30 20 10 1 6: 120 144 90 40 15 1 ... From _Peter Luschny_, Nov 19 2020: (Start): The combinatorial interpretation is illustrated by this computation of row 6: 6! / aut([6]) = 720 / A339033(6, 1) = 720/6 = 120 = T(6, 1) 6! / aut([5, 1]) = 720 / A339033(6, 2) = 720/5 = 144 = T(6, 2) 6! / aut([4, 1, 1]) = 720 / A339033(6, 3) = 720/8 = 90 = T(6, 3) 6! / aut([3, 1, 1, 1]) = 720 / A339033(6, 4) = 720/18 = 40 = T(6, 4) 6! / aut([2, 1, 1, 1, 1]) = 720 / A339033(6, 5) = 720/48 = 15 = T(6, 5) 6! / aut([1, 1, 1, 1, 1, 1]) = 720 / A339033(6, 6) = 720/720 = 1 = T(6, 6) ------------------------------------------------------------------------------- Sum: 410 = A121726(6) (End)
References
- Abramowitz and Stegun, p. 831.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Programs
-
Mathematica
f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!];Table[Append[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]], 1], {n,1, 10}] // Grid (* Geoffrey Critzer, Nov 07 2015 *)
-
SageMath
def A092271(n, k): if n == k: return 1 return factorial(n) // ((n + 1 - k)*factorial(k - 1)) for n in (1..9): print(n, [A092271(n, k) for k in (1..n)]) def A092271Row(n): if n == 0: return [1] f = factorial(n); S = [] for k in range(n,0,-1): for p in Partitions(n, max_part=k, inner=[k], length=n+1-k): S.append(f // p.aut()) return S for n in (1..9): print(A092271Row(n)) # Peter Luschny, Nov 20 2020
Extensions
More terms from Geoffrey Critzer, Nov 10 2015
Comments