cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A092265 Sum of smallest parts of all partitions of n into distinct parts.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 14, 16, 23, 26, 34, 40, 50, 58, 74, 83, 102, 120, 142, 164, 198, 226, 266, 308, 359, 412, 482, 548, 634, 730, 834, 950, 1094, 1240, 1416, 1609, 1826, 2068, 2350, 2648, 2994, 3382, 3806, 4280, 4826, 5408, 6070, 6806, 7619, 8522, 9534, 10632
Offset: 1

Views

Author

Vladeta Jovovic, Feb 14 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n,i+1)+b(n-i, i+1)))
        end:
    a:= n-> add(j*b(n-j, j+1), j=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 03 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i + 1] + b[n - i, i + 1]]]; a[n_] := Sum[j*b[n - j, j + 1], {j, 1, n}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 21 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{n >= 1} (-1 + Product_{k >= n} 1 + x^k).
G.f.: Sum_{n >= 1} n*x^n*Product_{k >= n+1} (1 + x^k). - Joerg Arndt, Jan 29 2011
G.f.: Sum_{k >= 1} x^(k*(k+1)/2)/(1 - x^k)/Product_{i = 1..k} (1 - x^i). - Vladeta Jovovic, Aug 10 2004
Conjecture: a(n) = A034296(n) + A237665(n+1). - George Beck, May 06 2017
a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 20 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A092319 Sum of smallest parts of all partitions of n into odd distinct parts.

Original entry on oeis.org

1, 0, 3, 1, 5, 1, 7, 4, 10, 4, 12, 9, 15, 9, 20, 17, 23, 17, 28, 27, 36, 28, 41, 43, 50, 44, 62, 62, 71, 66, 84, 91, 103, 96, 119, 127, 139, 137, 167, 178, 191, 192, 223, 241, 266, 264, 302, 331, 351, 360, 411, 439, 469, 485, 542, 587, 628, 646, 714, 773, 819, 854, 945
Offset: 1

Views

Author

Vladeta Jovovic, Feb 15 2004

Keywords

Comments

a(n) = Sum_{k>=0} A116860(n,k). - Emeric Deutsch, Feb 27 2006

Examples

			a(13)=15 because the partitions of 13 into distinct odd parts are [13],[9,3,1] and [7,5,1], with sum of the smallest terms 13+1+1=15.
		

Crossrefs

Cf. A092316.
Cf. A116860.

Programs

  • Maple
    f:=sum((2*n-1)*x^(2*n-1)*product(1+x^(2*k+1),k=n..40),n=1..40): fser:=simplify(series(f,x=0,66)): seq(coeff(fser,x^n),n=1..63); # Emeric Deutsch, Feb 27 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+2)+b(n-i, i+2)))
        end:
    a:= n-> add(`if`(j::odd, j*b(n-j, j+2), 0), j=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 03 2016
  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[(2*k - 1)*x^(2*k - 1) * Product[1 + x^(2*j + 1), {j, k, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 28 2016 *)

Formula

G.f.: Sum((2*n-1)*x^(2*n-1)*Product(1+x^(2*k+1), k = n .. infinity), n = 1 .. infinity).
a(n) ~ 3^(3/4) * exp(Pi*sqrt(n/6)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, May 20 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A116857 Triangle read by rows: T(n,k) is the number of partitions of n into distinct odd parts, the largest of which is k (n>=1, k>=1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 24 2006

Keywords

Comments

Both rows 2n-1 and 2n have 2n-1 terms each. Row sums yield A000700. T(n,2k)=0 Sum(k*T(n,k),k>=1) = A092316(n).

Examples

			T(20,11)=2 because we have [11,9] and [11,5,3,1].
T(30,17)=3 because we have [17,13],[17,9,3,1] and [17,7,5,1].
Triangle starts:
  1;
  0;
  0,0,1;
  0,0,1;
  0,0,0,0,1;
  0,0,0,0,1;
  0,0,0,0,0,0,1;
  0,0,0,0,1,0,1;
  ...
		

Crossrefs

Programs

  • Maple
    g:=sum(t^(2*j-1)*x^(2*j-1)*product(1+x^(2*i-1),i=1..j-1),j=1..30): gser:=simplify(series(g,x=0,22)): for n from 1 to 20 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 20 do seq(coeff(P[n],t^j),j=1..2*ceil(n/2)-1) od; # yields sequence in triangular form

Formula

G.f.: sum(t^(2j-1)*x^(2j-1)*product(1+x^(2i-1), i=1..j-1), j=1..infinity).
Showing 1-3 of 3 results.