A056053 a(n) = smallest odd number 2m+1 such that the partial sum of the odd harmonic series Sum_{j=0..m} 1/(2j+1) is > n.
1, 3, 15, 113, 837, 6183, 45691, 337607, 2494595, 18432707, 136200301, 1006391657, 7436284415, 54947122715, 406007372211, 3000011249847, 22167251422541, 163795064320249, 1210290918990281, 8942907496445513, 66079645178783351, 488266205223462461, 3607826381608149807
Offset: 0
Keywords
References
- Calvin C. Clawson, "Mathematical Mysteries, The Beauty and Magic of Numbers," Plenum Press, NY and London, 1996, page 64.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..500
- Grant Sanderson, Researchers thought this was a bug (Borwein integrals), 3Blue1Brown video (2022).
- Wikipedia, Borwein integral
Crossrefs
Programs
-
Mathematica
s = 0; k = 1; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 2]; Print[k]; k += 2, {n, 1, 11}]
Formula
a(n) ~ floor((1/2)*A002387(2n)).
The next term is approximately the previous term * e^2.
a(n) = A092315(n)*2 + 1 = floor(exp(n*2-Euler)/4+1/8)*2+1 for all n (conjectured). - M. F. Hasler, Jan 24 2017
Extensions
Corrected by N. J. A. Sloane, Feb 16 2004
More terms from Robert G. Wilson v, Apr 17 2004
a(17) corrected - see correction in A092315. - Gerhard Kirchner, Jul 25 2020
a(0) prepended by Robert G. Wilson v, Oct 23 2024
Comments