A092315 a(n) is the smallest m such that the partial sum of the odd harmonic series Sum_{j=0..m} 1/(2j+1) is > n.
1, 7, 56, 418, 3091, 22845, 168803, 1247297, 9216353, 68100150, 503195828, 3718142207, 27473561357, 203003686105, 1500005624923, 11083625711270, 81897532160124, 605145459495140, 4471453748222756, 33039822589391675, 244133102611731230, 1803913190804074903
Offset: 1
Keywords
A056054 a(n) = smallest even number 2m such that value of odd harmonic series Sum_{j=0..m} 1/(2j) is > n.
8, 62, 454, 3348, 24734, 182760, 1350428, 9978382, 73730824, 544801200, 4025566630, 29745137662, 219788490858, 1624029488844, 12000044999386, 88669005690160, 655180257281000, 4841163675961122, 35771629985782052
Offset: 1
Keywords
Comments
Numbers 2*m such that floor(f(m)) = floor(f(m-1)) where f(m) = Sum_{j=1..m} ((2*j-1)/(2*j)). Examples:
floor(f(1))=floor(1/2)=0;
floor(f(2))=floor(1/2+3/4)=floor(1.25)=1, then 2*2=4 is not in the sequence;
floor(f(3))=floor(1/2+3/4+5/6)=floor(2.083..)=2, then 2*3=6 is not in the sequence;
floor(f(4))=floor(1/2+3/4+5/6+7/8)=floor(2.958..)=2, then 2*4=8 is the first term of the sequence. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 15 2007
References
- Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Plenum Press, NY and London, 1996, page 64.
Programs
-
Mathematica
s = 0; k = 2; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 2]; Print[k]; k += 2, {n, 1, 12}] (* or assuming that the Mathematica coding in A002387 is correct then *) b[n_] := Module[{k = Floor[2a[2n]]}, If[ EvenQ[k], k, k + 1]]; Table[ b[n], {n, 19}] (* Robert G. Wilson v, Apr 17 2004 *)
Formula
a(n) = 2*A002387(2n).
The next term is approximately the previous term * e^2.
A281355 a(n) = A092318(n) + 1: Number of terms of the odd harmonic series 1 + 1/3 + 1/5 + 1/7 + ... required to reach a sum >= n.
1, 8, 57, 419, 3092, 22846, 168804, 1247298, 9216354, 68100151, 503195829, 3718142208, 27473561358, 203003686106, 1500005624924, 11083625711271, 81897532160125, 605145459495141, 4471453748222757, 33039822589391676, 244133102611731231, 1803913190804074904, 13329215764452299411
Offset: 1
Keywords
Comments
Links
- Gerhard Kirchner, Table of n, a(n) for n = 1..1000 [replacing an older version by Vincenzo Librandi]
- Jerry V Polfer, found a new sequence, not sure if interesting, and how to properly submit, Seqfan list, Jan. 22, 2017 (and follow-up messages).
- Albert Säfström, n describes the expected number of loops created by tieing together two random loose ends of a(n) ropes until there is none left.
Programs
-
Mathematica
a[n_]:=Floor[Exp[2*n-EulerGamma]/4+1]-Boole[n==1]; Array[a,23] (* Stefano Spezia, Jun 25 2024 *)
Formula
Lim_{n -> oo} a(n)/exp(2*n) = 1/4e^gamma ~ 0.140364870891721292456...;
a(n) = floor(exp(2*n-gamma)/4+1), for all given values a(n) > 1. - M. F. Hasler and Robert G. Wilson v, Jan 23 2017 [corrected by Gerhard Kirchner, Jul 25 2020]
Extensions
More explicit, self-contained definition by M. F. Hasler, Jan 22 2017
More terms (computed using A056053) from M. F. Hasler, Jan 23 2017
a(17) corrected in data and 127 terms in the b-file, according to the corrections in A092315, Gerhard Kirchner, Jul 27 2020
A091463 a(n) is the smallest j such that 1/1 + 1/4 + 1/7 + ... + 1/j exceeds n.
4, 52, 1060, 21301, 427873, 8594032, 172615738, 3467079760, 69638158519
Offset: 1
Programs
-
Mathematica
s = 0; k = 1; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 7}]
Formula
The next term is approximately the previous term * e^3.
Extensions
Name edited by Jon E. Schoenfield, Dec 20 2019
a(8)-a(9) from Hugo Pfoertner, Dec 27 2019
A091464 a(n) is the smallest j such that 1/2 + 1/5 + 1/8 + ... + 1/j exceeds n.
17, 323, 6506, 130664, 2624438, 52713275, 1058774426, 21266052797, 427140088670
Offset: 1
Programs
-
Mathematica
s = 0; k = 2; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 7}]
Formula
The next term is approximately the previous term * e^3.
Extensions
a(8)-a(9) from Hugo Pfoertner, Dec 26 2019
A092317 a(n) = smallest odd number 2m+1 such that the partial sum Sum_{j=0..m} 1/(2j+1) of the odd harmonic series is >= n.
1, 15, 113, 837, 6183, 45691, 337607, 2494595, 18432707, 136200301, 1006391657, 7436284415, 54947122715, 406007372211, 3000011249847, 22167251422541, 163795064320249, 1210290918990281, 8942907496445513, 66079645178783351
Offset: 1
Keywords
Formula
a(n) ~ C*exp(2n) with C = 0.2807297417834425... - M. F. Hasler, Jan 22 2017
Extensions
More terms (via A056053) from M. F. Hasler, Jan 22 2017
a(17) corrected - see correction in A092315. Gerhard Kirchner, Jul 25 2020
A091462 a(n) is the smallest j such that 1/3 + 1/6 + 1/9 + ... + 1/j exceeds n.
3, 33, 681, 13650, 274140, 5506263, 110596236, 2221384803, 44617706493, 896170591203, 18000067499079, 361541020372644, 7261745513941683, 145856057647068072, 2929597231340774769, 58842533360163495285, 1181883876459465987195, 23738772239546776075803, 476805986328559173414774
Offset: 0
Keywords
Programs
-
Mathematica
s = 0; k = 3; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 12}]
Formula
a(n) = 3*A002387(3n).
The next term is approximately the previous term * e^3.
Extensions
a(0) prepended and more terms added by Max Alekseyev, Sep 01 2023
A092267 Values 2m_0+1 = 1, 2m_1, 2m_2+1, ... associated with divergent series T shown below.
1, 454, 45891, 547208496, 3013267310449, 1961694770407970734, 589785633779065944213245, 20963601300674244910397534828794, 344117353602393170461608383214200982125
Offset: 0
Comments
T = 1
- (1/2 + 1/4 + 1/6 + ... + 1/(2m_1))
+ (1/3 + 1/5 + 1/7 + ... + 1/(2m_2+1))
- (1/(2m_1+2) + 1/(2m_1+4) + ... + 1/(2m_3)
+ (1/(2m_2+3) + 1/(2m_2+5) + ... + 1/(2m_4+1))
- (1/(2m_3+2) + 1/(2m_3+4) + ... + 1/(2m_5)
+ (1/(2m_4+3) + 1/(2m_4+5) + ... + 1/(2m_6+1))
- ...
where the partial sums of the terms from 1 through the end of rows 0, 1, ... are respectively 1, just < -2, just > 3, just < -4, just > 5, etc.
Every positive number appears exactly once as a denominator in T.
The series T is a divergent rearrangement of the conditionally convergent series Sum_{ j>=1} (-1)^j/j which has the entire real number system as its set of limit points.
Examples
1 - (1/2 + 1/4 + 1/6 + ... + 1/454) = -2.002183354..., which is just less than -2; so a(1) = 2m_1 = 454. 1 - (1/2 + 1/4 + 1/6 + ... + 1/454) + (1/3 + 1/5 + ... + 1/45891) = 3.000021113057..., which is just greater than 3; so a(1) = 2m_2 + 1 = 45891.
References
- B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964; see p. 55.
Crossrefs
Extensions
a(2) and a(3) from Hugo Pfoertner, Feb 17 2004
a(4) onwards from Hans Havermann, Feb 18 2004
A092324 Values m_0 = 0, m_1, m_2, ... associated with divergent series T shown below.
0, 227, 22945, 273604248, 1506633655224, 980847385203985367, 294892816889532972106622, 10481800650337122455198767414397, 172058676801196585230804191607100491062
Offset: 0
Comments
T = 1
- (1/2 + 1/4 + 1/6 + ... + 1/(2m_1))
+ (1/3 + 1/5 + 1/7 + ... + 1/(2m_2+1))
- (1/(2m_1+2) + 1/(2m_1+4) + ... + 1/(2m_3)
+ (1/(2m_2+3) + 1/(2m_2+5) + ... + 1/(2m_4+1))
- (1/(2m_3+2) + 1/(2m_3+4) + ... + 1/(2m_5)
+ (1/(2m_4+3) + 1/(2m_4+5) + ... + 1/(2m_6+1))
- ...
where the partial sums of the terms from 1 through the end of rows 0, 1, ... are respectively 1, just < -2, just > 3, just < -4, just > 5, etc.
Every positive number appears exactly once as a denominator in T.
The series T is a divergent rearrangement of the conditionally convergent series Sum_{j>=1} (-1)^j/j which has the entire real number system as its set of limit points.
Comment from Hans Havermann: I calculated these with Mathematica. I used NSum[1/(2i), {i, 1, x}] for the even denominators, where I had to adjust the options to obtain maximal accuracy and N[(EulerGamma + Log[4] - 2)/2 + PolyGamma[0, 3/2 + y]/2, precision] for the odd denominators. The precision needed for the last term shown was around 45 digits.
Examples
1 - (1/2 + 1/4 + 1/6 + ... + 1/454) = -2.002183354..., which is just less than -2; so a(1) = m_1 = 227. 1 - (1/2 + 1/4 + 1/6 + ... + 1/454) + (1/3 + 1/5 + ... + 1/45891) = 3.000021113057..., which is just greater than 3; so a(2) = m_2 = 22945.
References
- B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964; see p. 55.
Crossrefs
Extensions
a(2) and a(3) from Hugo Pfoertner, Feb 17 2004
a(4) onwards from Hans Havermann, Feb 18 2004
A338857 With S(n,k) = Sum_{n<=j<=k} 1/(2*j+1), a(n)=k+1 such that S(n,k-1) < 1 <= S(n,k) for n>=0 and a(0)=1.
1, 8, 15, 23, 30, 38, 45, 52, 60, 67, 74, 82, 89, 97, 104, 111, 119, 126, 134, 141, 148, 156, 163, 170, 178, 185, 193, 200, 207, 215, 222, 230, 237, 244, 252, 259, 267, 274, 281, 289, 296, 303, 311, 318, 326, 333, 340, 348, 355, 363, 370, 377, 385, 392, 400, 407, 414
Offset: 0
Keywords
Comments
The following version of the well-known "camel and banana (dates)" problem, is an application of the sequence above:
A camel is to bring full water bags from oasis A to oasis B. It can carry the driver, one full and one empty bag. A full bag is just enough to supply the camel with water for one way from A to B. What is the minimum reserve a(n) of full bags at oasis A if n full bags are to be delivered at B and depots may be installed along the way?
For details, see link "Transport problem".
n=0: The camel carries one bag which is full in A and empty in B.
Examples
n=0: S(0,k-1)=1 for k=1. Thus a(0) = 1+0 = 1. n=1: S(1,6)=1/3+1/5+...+1/11+1/13=0.995<1, S(1,7)=S(1,6)+1/15=1.022>1. Thus a(1) = 7+1 = 8. n=2: S(2,13)=1/5+1/7+...+1/25+1/27=0.968<1, S(2,14)=S(2,13)+1/29=1.003>1. Thus a(2) = 14+1 = 15.
Links
- Gerhard Kirchner, Transport problem
Programs
-
Mathematica
Block[{S}, S[n_, k_] := Sum[1/(2 j + 1), {j, n, k}]; {1}~Join~Array[Block[{k = 1}, While[Nand[S[#, k - 1] < 1 <= S[#, k]], k++]; k + 1] &, 56]] (* Michael De Vlieger, Nov 12 2020 *)
-
Maxima
block(su: 0, k: 0, n: 1, nmax: 80, /*program returns the first nmax terms*/ v: makelist(0, i, 0, nmax), v[1]: 1, while n<=nmax do (k: k+1, su: su+1/(2*k+1), if su>1 then (v[n+1]: k+1, su: su-1/(2*n+1), n: n+1)), return(v));
Formula
Conjecture: a(n) = ceiling(n*exp(2)+(exp(2)+exp(-2))/(24*n)), verified for n<=3000.
Comments
Links
Crossrefs
Programs
Mathematica
Maxima
Formula
Extensions