cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A056053 a(n) = smallest odd number 2m+1 such that the partial sum of the odd harmonic series Sum_{j=0..m} 1/(2j+1) is > n.

Original entry on oeis.org

1, 3, 15, 113, 837, 6183, 45691, 337607, 2494595, 18432707, 136200301, 1006391657, 7436284415, 54947122715, 406007372211, 3000011249847, 22167251422541, 163795064320249, 1210290918990281, 8942907496445513, 66079645178783351, 488266205223462461, 3607826381608149807
Offset: 0

Views

Author

Robert G. Wilson v, Jul 25 2000 and Jan 11 2004

Keywords

Comments

a(2) = 15 and a(3) = 113 are related to the Borwein integrals. Concretely, a(2) = 15 is the smallest odd m such that the integral Integral_{x=-oo..oo} Product_{1<=k<=m, k odd} (sin(k*x)/(k*x)) dx is slightly less than Pi, and a(3) = 113 is the smallest odd m such that the integral Integral_{x=-oo..oo} cos(x) * Product_{1<=k<=m, k odd} (sin(k*x)/(k*x)) dx is slightly less than Pi/2. See the Wikipedia link and the 3Blue1Brown video link below. - Jianing Song, Dec 10 2022

References

  • Calvin C. Clawson, "Mathematical Mysteries, The Beauty and Magic of Numbers," Plenum Press, NY and London, 1996, page 64.

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 2]; Print[k]; k += 2, {n, 1, 11}]

Formula

a(n) ~ floor((1/2)*A002387(2n)).
The next term is approximately the previous term * e^2.
a(n) = A092315(n)*2 + 1 = floor(exp(n*2-Euler)/4+1/8)*2+1 for all n (conjectured). - M. F. Hasler, Jan 24 2017
a(n) ~ exp(2*n - A350763) = (1/2)*exp(2*n - gamma), gamma = A001620. - A.H.M. Smeets, Apr 15 2022

Extensions

Corrected by N. J. A. Sloane, Feb 16 2004
More terms from Robert G. Wilson v, Apr 17 2004
a(17) corrected - see correction in A092315. - Gerhard Kirchner, Jul 25 2020
a(0) prepended by Robert G. Wilson v, Oct 23 2024

A056054 a(n) = smallest even number 2m such that value of odd harmonic series Sum_{j=0..m} 1/(2j) is > n.

Original entry on oeis.org

8, 62, 454, 3348, 24734, 182760, 1350428, 9978382, 73730824, 544801200, 4025566630, 29745137662, 219788490858, 1624029488844, 12000044999386, 88669005690160, 655180257281000, 4841163675961122, 35771629985782052
Offset: 1

Views

Author

Robert G. Wilson v, Jul 25 2000 and Jan 11 2004

Keywords

Comments

Numbers 2*m such that floor(f(m)) = floor(f(m-1)) where f(m) = Sum_{j=1..m} ((2*j-1)/(2*j)). Examples:
floor(f(1))=floor(1/2)=0;
floor(f(2))=floor(1/2+3/4)=floor(1.25)=1, then 2*2=4 is not in the sequence;
floor(f(3))=floor(1/2+3/4+5/6)=floor(2.083..)=2, then 2*3=6 is not in the sequence;
floor(f(4))=floor(1/2+3/4+5/6+7/8)=floor(2.958..)=2, then 2*4=8 is the first term of the sequence. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 15 2007

References

  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Plenum Press, NY and London, 1996, page 64.

Crossrefs

Programs

  • Mathematica
    s = 0; k = 2; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 2]; Print[k]; k += 2, {n, 1, 12}]
    (* or assuming that the Mathematica coding in A002387 is correct then *)
    b[n_] := Module[{k = Floor[2a[2n]]}, If[ EvenQ[k], k, k + 1]]; Table[ b[n], {n, 19}] (* Robert G. Wilson v, Apr 17 2004 *)

Formula

a(n) = 2*A002387(2n).
The next term is approximately the previous term * e^2.

A091463 a(n) is the smallest j such that 1/1 + 1/4 + 1/7 + ... + 1/j exceeds n.

Original entry on oeis.org

4, 52, 1060, 21301, 427873, 8594032, 172615738, 3467079760, 69638158519
Offset: 1

Views

Author

Robert G. Wilson v, Jan 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 7}]

Formula

The next term is approximately the previous term * e^3.

Extensions

Name edited by Jon E. Schoenfield, Dec 20 2019
a(8)-a(9) from Hugo Pfoertner, Dec 27 2019

A091462 a(n) is the smallest j such that 1/3 + 1/6 + 1/9 + ... + 1/j exceeds n.

Original entry on oeis.org

3, 33, 681, 13650, 274140, 5506263, 110596236, 2221384803, 44617706493, 896170591203, 18000067499079, 361541020372644, 7261745513941683, 145856057647068072, 2929597231340774769, 58842533360163495285, 1181883876459465987195, 23738772239546776075803, 476805986328559173414774
Offset: 0

Views

Author

Robert G. Wilson v, Jan 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    s = 0; k = 3; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 12}]

Formula

a(n) = 3*A002387(3n).
The next term is approximately the previous term * e^3.

Extensions

a(0) prepended and more terms added by Max Alekseyev, Sep 01 2023
Showing 1-4 of 4 results.