A056053
a(n) = smallest odd number 2m+1 such that the partial sum of the odd harmonic series Sum_{j=0..m} 1/(2j+1) is > n.
Original entry on oeis.org
1, 3, 15, 113, 837, 6183, 45691, 337607, 2494595, 18432707, 136200301, 1006391657, 7436284415, 54947122715, 406007372211, 3000011249847, 22167251422541, 163795064320249, 1210290918990281, 8942907496445513, 66079645178783351, 488266205223462461, 3607826381608149807
Offset: 0
- Calvin C. Clawson, "Mathematical Mysteries, The Beauty and Magic of Numbers," Plenum Press, NY and London, 1996, page 64.
-
s = 0; k = 1; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 2]; Print[k]; k += 2, {n, 1, 11}]
A092318
a(n) = smallest m such that value of odd harmonic series Sum_{j=0..m} 1/(2j+1) is >= n.
Original entry on oeis.org
0, 7, 56, 418, 3091, 22845, 168803, 1247297, 9216353, 68100150, 503195828, 3718142207, 27473561357, 203003686105, 1500005624923, 11083625711270, 81897532160124, 605145459495140, 4471453748222756, 33039822589391675
Offset: 1
Cf.
A281355 (= a(n) + 1) for a variant.
A281355
a(n) = A092318(n) + 1: Number of terms of the odd harmonic series 1 + 1/3 + 1/5 + 1/7 + ... required to reach a sum >= n.
Original entry on oeis.org
1, 8, 57, 419, 3092, 22846, 168804, 1247298, 9216354, 68100151, 503195829, 3718142208, 27473561358, 203003686106, 1500005624924, 11083625711271, 81897532160125, 605145459495141, 4471453748222757, 33039822589391676, 244133102611731231, 1803913190804074904, 13329215764452299411
Offset: 1
More explicit, self-contained definition by
M. F. Hasler, Jan 22 2017
a(17) corrected in data and 127 terms in the b-file, according to the corrections in
A092315,
Gerhard Kirchner, Jul 27 2020
A092317
a(n) = smallest odd number 2m+1 such that the partial sum Sum_{j=0..m} 1/(2j+1) of the odd harmonic series is >= n.
Original entry on oeis.org
1, 15, 113, 837, 6183, 45691, 337607, 2494595, 18432707, 136200301, 1006391657, 7436284415, 54947122715, 406007372211, 3000011249847, 22167251422541, 163795064320249, 1210290918990281, 8942907496445513, 66079645178783351
Offset: 1
A289183
a(n) is the greatest m such that 2*H(n) > H(m), where H(n) is the n-th harmonic number.
Original entry on oeis.org
3, 10, 21, 35, 53, 74, 99, 128, 160, 196, 235, 277, 324, 374, 427, 484, 545, 609, 676, 748, 822, 901, 983, 1068, 1157, 1250, 1346, 1446, 1549, 1656, 1766, 1880, 1998, 2119, 2244, 2372, 2504, 2639, 2778, 2921, 3067, 3216, 3369, 3526, 3686, 3850, 4018, 4189
Offset: 1
-
s = HarmonicNumber@ Range[10^4]; Table[Position[s, k_ /; k < 2 HarmonicNumber@ n][[-1, 1]], {n, 48}] (* Michael De Vlieger, Jun 27 2017 *)
(* The following program searches for such n that f(n) <> a(n) *)
f[n_] := Floor[n^2*E^(EulerGamma + 1/n) - (1/2 + (1/6)*E^(EulerGamma))];
harmonic[n_] := Log[n] + EulerGamma + 1/(2 n) - Sum[BernoulliB[2 k]/(2 k*n^(2 k)), {k, 1, 10}];
Select[Range[100000], 2*harmonic[#] < harmonic[f[#]] &]
(* Vaclav Kotesovec, Jul 17 2017 *)
-
a(n) = {my(m=1); hn = sum(k=1, n, 1/k); hm = 1; until(hm > 2*hn, m++; hm+=1/m); m--;} \\ Michel Marcus, Jul 19 2017
-
from sympy import harmonic
def a(n):
hn2 = 2 * harmonic(n)
m = n
while harmonic(m) <= hn2: m += 1
return m - 1
print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Mar 10 2021
A092267
Values 2m_0+1 = 1, 2m_1, 2m_2+1, ... associated with divergent series T shown below.
Original entry on oeis.org
1, 454, 45891, 547208496, 3013267310449, 1961694770407970734, 589785633779065944213245, 20963601300674244910397534828794, 344117353602393170461608383214200982125
Offset: 0
1 - (1/2 + 1/4 + 1/6 + ... + 1/454) = -2.002183354..., which is just less than -2; so a(1) = 2m_1 = 454.
1 - (1/2 + 1/4 + 1/6 + ... + 1/454) + (1/3 + 1/5 + ... + 1/45891) = 3.000021113057..., which is just greater than 3; so a(1) = 2m_2 + 1 = 45891.
- B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964; see p. 55.
A092324
Values m_0 = 0, m_1, m_2, ... associated with divergent series T shown below.
Original entry on oeis.org
0, 227, 22945, 273604248, 1506633655224, 980847385203985367, 294892816889532972106622, 10481800650337122455198767414397, 172058676801196585230804191607100491062
Offset: 0
1 - (1/2 + 1/4 + 1/6 + ... + 1/454) = -2.002183354..., which is just less than -2; so a(1) = m_1 = 227.
1 - (1/2 + 1/4 + 1/6 + ... + 1/454) + (1/3 + 1/5 + ... + 1/45891) = 3.000021113057..., which is just greater than 3; so a(2) = m_2 = 22945.
- B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964; see p. 55.
A337748
T(m,n) is the least k such that the partial sum of the series Sum_{j=0..k} 1/(m*j+1) is > n, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 7, 10, 1, 17, 56, 30, 1, 43, 353, 418, 82, 1, 111, 2374, 7100, 3091, 226, 1, 289, 16497, 129644, 142624, 22845, 615, 1, 762, 116759, 2448436, 7078315, 2864677, 168803, 1673, 1, 2021, 835695, 47104189, 363380155, 386462913, 57538579, 1247297, 4549, 1, 5389, 6025478, 916451548, 19003186159, 53930396770, 21100160132, 1155693253, 9216353, 12366
Offset: 1
T(m,n) begins:
m=1: 1 3 10 30 82 ...
m=2: 1 7 56 418 3091 ...
m=3: 1 17 353 7100 142624 ...
m=4: 1 43 2374 129644 7078315 ...
m=5: 1 111 16497 2448436 363380155 ...
.............................
Evaluation of c(3):
1. S(3,99) = 0.1472791427382, see formulas (P1) and (P2).
2. F(3,100) = 10^(-2)/9 + 10^(-4)/27 + 10^(-6)/243 - 10^(-8)/243 ..., see (P5) = 0.001114818889, see formulas (P3) and (P4).
The next summand is 10^(-10)/729 ~ 10^(-13), the precision is approximately p = 13 digits.
3. beta(3) = 0.1483939616270.
4. c(3) = 3.1320337800204.
Evaluation of T(3,5):
5. Summing up directly with k = 142624: H(3,k-1) = 4.9999999, H(3,k) = 5.0000022. => T(3,5) = 142624.
6. Using the formula with k1 = exp(3*5-c(3))-5/6 = 142623.0446139:
T(3,5) = floor(k1+1) = 142624.
7,1. floor(k1) = floor(k2) is satisfied with k2 = k1-1/(24*k1) = 142623.0446136.
7,2. With d = 0.0446 and p = 13, k1 < d*10^(-13) is satisfied, too.
-
block(p:100, km: 100, eps:10^(-p), lim:10^(p), cc:[],
/*"harm-bfile.txt" with terms < lim is saved*/
gam: bfloat(%gamma),
fpprec:p, load(newton1),
fl: openw("harm-bfile.txt"),
c(m):= block(x:0, delta: 1, r:0,
if m=1 then return(gam) else
(for k from 1 thru km-1 do x: x+bfloat(1/(m*k*(m*k+1))),
while delta=0 or delta >eps do
(r: r+1, su:0,
for j from 1 thru r-1 do su: su+a[r-j]*(-1)^j*binomial(r,j+1),
ar: bfloat(-((-1)^r/m^(r+1)+su)/r), ad: ar/km^r, a: append(a,[ar]),
x: x+bfloat(ad), delta: abs(ad)), return(gam+m*(1-x)))),
mn:0, ok: true, nr:0,
while ok do (mn: mn+1, a:[], cc: append(cc, [c(mn)]), m:mn+1,
while m>1 and ok do (m: m-1, n: mn+1-m,
k1: exp(m*n-cc[m])-(m+2)/(2*m), k2: k1-1/(24*k1),
ka: floor(k1+1), kb: floor(k2+1),
if ka>1 then
(d: kb-k2, if d>1-d then d: 1-d, if ka#kb or kb> d*lim then ok: false),
if ok then (nr: nr+1, printf(fl, concat(nr, " ", ka)), newline(fl) ) ) ),
close(fl));
A338857
With S(n,k) = Sum_{n<=j<=k} 1/(2*j+1), a(n)=k+1 such that S(n,k-1) < 1 <= S(n,k) for n>=0 and a(0)=1.
Original entry on oeis.org
1, 8, 15, 23, 30, 38, 45, 52, 60, 67, 74, 82, 89, 97, 104, 111, 119, 126, 134, 141, 148, 156, 163, 170, 178, 185, 193, 200, 207, 215, 222, 230, 237, 244, 252, 259, 267, 274, 281, 289, 296, 303, 311, 318, 326, 333, 340, 348, 355, 363, 370, 377, 385, 392, 400, 407, 414
Offset: 0
n=0: S(0,k-1)=1 for k=1.
Thus a(0) = 1+0 = 1.
n=1: S(1,6)=1/3+1/5+...+1/11+1/13=0.995<1, S(1,7)=S(1,6)+1/15=1.022>1.
Thus a(1) = 7+1 = 8.
n=2: S(2,13)=1/5+1/7+...+1/25+1/27=0.968<1, S(2,14)=S(2,13)+1/29=1.003>1.
Thus a(2) = 14+1 = 15.
-
Block[{S}, S[n_, k_] := Sum[1/(2 j + 1), {j, n, k}]; {1}~Join~Array[Block[{k = 1}, While[Nand[S[#, k - 1] < 1 <= S[#, k]], k++]; k + 1] &, 56]] (* Michael De Vlieger, Nov 12 2020 *)
-
block(su: 0, k: 0, n: 1, nmax: 80,
/*program returns the first nmax terms*/
v: makelist(0, i, 0, nmax), v[1]: 1,
while n<=nmax do
(k: k+1, su: su+1/(2*k+1),
if su>1 then
(v[n+1]: k+1, su: su-1/(2*n+1), n: n+1)),
return(v));
Showing 1-9 of 9 results.
Comments