cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092319 Sum of smallest parts of all partitions of n into odd distinct parts.

Original entry on oeis.org

1, 0, 3, 1, 5, 1, 7, 4, 10, 4, 12, 9, 15, 9, 20, 17, 23, 17, 28, 27, 36, 28, 41, 43, 50, 44, 62, 62, 71, 66, 84, 91, 103, 96, 119, 127, 139, 137, 167, 178, 191, 192, 223, 241, 266, 264, 302, 331, 351, 360, 411, 439, 469, 485, 542, 587, 628, 646, 714, 773, 819, 854, 945
Offset: 1

Views

Author

Vladeta Jovovic, Feb 15 2004

Keywords

Comments

a(n) = Sum_{k>=0} A116860(n,k). - Emeric Deutsch, Feb 27 2006

Examples

			a(13)=15 because the partitions of 13 into distinct odd parts are [13],[9,3,1] and [7,5,1], with sum of the smallest terms 13+1+1=15.
		

Crossrefs

Cf. A092316.
Cf. A116860.

Programs

  • Maple
    f:=sum((2*n-1)*x^(2*n-1)*product(1+x^(2*k+1),k=n..40),n=1..40): fser:=simplify(series(f,x=0,66)): seq(coeff(fser,x^n),n=1..63); # Emeric Deutsch, Feb 27 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+2)+b(n-i, i+2)))
        end:
    a:= n-> add(`if`(j::odd, j*b(n-j, j+2), 0), j=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 03 2016
  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[(2*k - 1)*x^(2*k - 1) * Product[1 + x^(2*j + 1), {j, k, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 28 2016 *)

Formula

G.f.: Sum((2*n-1)*x^(2*n-1)*Product(1+x^(2*k+1), k = n .. infinity), n = 1 .. infinity).
a(n) ~ 3^(3/4) * exp(Pi*sqrt(n/6)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, May 20 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004