A092330 Fibonacci quotients: Fibonacci(p - Legendre(p|5))/p where p runs through the primes.
1, 1, 1, 3, 5, 29, 152, 136, 2016, 10959, 26840, 1056437, 2495955, 16311831, 102287808, 1627690024, 10021808981, 25377192720, 1085424779823, 2681584376185, 17876295136009, 113220181313816, 1933742696582736
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..647
- Zhi-Hong Sun and Zhi-Wei Sun, Fibonacci numbers and Fermat's last theorem, Acta Arithmetica 60(4) (1992), 371-388.
- H. C. Williams, Some formulas concerning the fundamental unit of a real quadratic field, Discrete Mathematics, 92 (1991), 431-440.
- Wikipedia, Prime divisors of Fibonacci numbers
- Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv preprint arXiv:1507.04917 [math.NT], 2015.
Programs
-
Maple
f:= proc(n) local p; p:= ithprime(n); combinat:-fibonacci(p - numtheory:-legendre(p,5))/p end proc: seq(f(n),n=1..30); # Robert Israel, Sep 21 2014
-
Mathematica
a[n_] := With[{p = Prime[n]}, Fibonacci[p - KroneckerSymbol[p, 5]]/p]; Array[a, 23] (* Jean-François Alcover, Nov 25 2017 *)
-
PARI
forprime (i=1,150,print1(fibonacci(i-kronecker(i,5))/i,","))
Extensions
Offset corrected by Jonathan Sondow, Dec 11 2017
Comments