cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296240 Pisano quotients: a(n) = (p-1)/k(p) if p == +- 1 mod 5, = (2*p+2)/k(p) if p == +- 2 mod 5, where p = prime(n) and k(p) = Pisano period(p).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 1, 1, 2, 9, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 7, 1, 1, 1, 3, 1, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 2, 20, 1, 6, 1, 9, 3, 1, 1, 1, 1, 1, 1
Offset: 4

Views

Author

Jonathan Sondow, Dec 09 2017

Keywords

Comments

Wall (1960) in Theorems 6 and 7 proved that a(n) is an integer for n >= 4. Jarden (1946) proved that the sequence is unbounded. See Elsenhans and Jahnel (2010), pp. 1-2.

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[n]}, T = Table[a = {1, 0}; a0 = a; k = 0; While[k++; s = Mod[Plus @@ a, p]; a = RotateLeft[a]; a[[2]] = s; a != a0]; k, {n, 1, 130}]; Table[L = KroneckerSymbol[p, 5]; (3 - L)/2 (p - L)/T[[n]], {n, 4, 130}]] (* after T. D. Noe *)

Formula

a(n) = (3 - L(p))/2 * (p - L(p)) / k(p), where p = prime(n), L(p) = Legendre(p|5), and k(p) = Pisano period(p) = A001175(p).
a(n) > 1 if and only if prime(n) is in A222413.

A222361 Fibonacci-Legendre quotients: (Fibonacci(p) - L(p/5)) / p, where p = prime(n) and L(p/5) is the Legendre symbol.

Original entry on oeis.org

1, 1, 1, 2, 8, 18, 94, 220, 1246, 17732, 43428, 652914, 4038540, 10081266, 63217342, 1005967758, 16215627560, 41061160360, 670829406162, 4338894664368, 11048157986978, 183194101578180, 1195118711985006, 19999768719154092, 862073644225241474, 5674731128849674100, 14568160545698020226, 96118885585174929102, 247025215671874138312, 1633201998168434481118
Offset: 1

Views

Author

Jonathan Sondow, Feb 23 2013

Keywords

Comments

Fibonacci(p) == L(p/5) mod p, where the Legendre symbol L(p/5) equals 0, +1, -1 according as p = 5, 5*k+-1, 5*k+-2 for some k.
Not to be confused with Fibonacci(p - L(p,5)) / p, which is A092330.

Examples

			Prime(4) = 7, so a(4) = (Fibonacci(7)-L(7/5))/7 = (13-(-1))/7 = 14/7 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; (Fibonacci[p] - JacobiSymbol[p, 5])/p, {n, 1, 30}]

Formula

For n>=4, a(n) = (Fibonacci(prime(n)) +/- 1)/prime(n), where '+' is chosen if prime(n)== 2 or 3 (mod 5), '-' is chosen otherwise. For n>=2, a(n) = round(Fibonacci(prime(n))/prime(n)). - Vladimir Shevelev, Mar 12 2014

A176951 Let p = prime(n). Then a(n) = Fibonacci(p+1)/p if this is an integer, otherwise a(n) = Fibonacci(p-1)/p if this is an integer, and fall back to a(n)=0 if both are non-integer.

Original entry on oeis.org

1, 1, 0, 3, 5, 29, 152, 136, 2016, 10959, 26840, 1056437, 2495955, 16311831, 102287808, 1627690024, 10021808981, 25377192720, 1085424779823, 2681584376185, 17876295136009, 113220181313816, 1933742696582736
Offset: 1

Views

Author

Roger L. Bagula, Apr 29 2010

Keywords

Comments

This differs only trivially from the better-defined A092330. - John Blythe Dobson, Sep 20 2014

Crossrefs

Cf. A092330.

Programs

  • Maple
    A176951aux := proc(n)
            if n = 0 then
                    0;
            elif combinat[fibonacci](n+1) mod n = 0 then
                    combinat[fibonacci](n+1)/n ;
            elif combinat[fibonacci](n-1) mod n = 0 then
                    combinat[fibonacci](n-1)/n ;
            else
                    0 ;
            end if;
    end proc:
    A176951 := proc(n)
            A176951aux(ithprime(n)) ;
    end proc:
    seq(A176951(n),n=1..20) ; # R. J. Mathar, Oct 29 2011
  • Mathematica
    f[n_] = If[n == 0, 0, If[Mod[Fibonacci[n + 1], n] == 0, Fibonacci[n + 1]/n, If[Mod[Fibonacci[n - 1], n] == 0, Fibonacci[n - 1]/n, 0]]];
    Table[f[Prime[n + 1]], {n, 0, 50}]
    Table[With[{f1=Fibonacci[p+1],f2=Fibonacci[p-1]},Which[IntegerQ[f1/p],f1/p,IntegerQ[f2/p],f2/p,True,0]],{p,Prime[Range[30]]}] (* Harvey P. Dale, Jun 09 2025 *)
  • PARI
    a(n)=my(p=prime(n),t);t=fibonacci(p+1);if(t%p==0,t/p,t=fibonacci(p-1);if(t%p==0,t/p,0)) \\ Charles R Greathouse IV, Oct 29 2011
Showing 1-3 of 3 results.