A092337 Triangle read by rows: T(n,m) = number of 3-uniform hypergraphs with m hyperedges on n unlabeled nodes, where 0 <= m <= C(n,3).
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 1, 3, 7, 21, 43, 94, 161, 249, 312, 352, 312, 249, 161, 94, 43, 21, 7, 3, 1, 1, 1, 1, 3, 10, 38, 137, 509, 1760, 5557, 15709, 39433, 87659, 172933, 303277, 473827, 660950, 824410, 920446, 920446, 824410, 660950
Offset: 3
Examples
Triangle T(n,m) begins: 1, 1; 1, 1, 1, 1, 1; 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1; 1, 1, 3, 7, 21, 43, 94, 161, 249, 312, 352, 312, 249, 161, 94, 43, 21, 7, 3, 1, 1;
Links
- Edgar M. Palmer, On the number of n-plexes, Discrete Math., 6 (1973), 377-390.
Programs
-
Mathematica
Needs["Combinatorica`"]; Table[A = Subsets[Range[n], {3}]; CoefficientList[CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /. Table[s[i] -> 1 + x^i, {i, 1, Binomial[n, 3]}], x], {n,3,7}] // Grid (* Geoffrey Critzer, Oct 28 2015 *)
Comments