cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092362 Number of partitions of n^2 into squares greater than 1.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 8, 11, 28, 44, 94, 167, 354, 643, 1314, 2412, 4792, 8981, 17374, 32566, 62008, 115702, 217040, 402396, 745795, 1372266, 2517983, 4595652, 8354350, 15125316, 27265107, 48972467, 87584837, 156119631, 277152178, 490437445, 864534950
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2004

Keywords

Comments

a(n) = A078134(A000290(n)).

Examples

			a(6) = 5: 6^2 = 36 = 16+16+4 = 16+4+4+4+4+4 = 9+9+9+9 = 4+4+4+4+4+4+4+4+4.
		

Crossrefs

Programs

  • Maple
    b:=proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<2, 0, b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i))))
       end:
    a:= n-> b(n^2, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<2, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n^2, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(2/3) / 2^(4/3)) * Zeta(3/2)^(4/3) / (2^(11/3) * sqrt(3) * Pi^(5/6) * n^(11/3)). - Vaclav Kotesovec, Apr 10 2017

Extensions

Corrected a(0) and more terms from Alois P. Heinz, Apr 15 2013