cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092371 Triangle read by rows: T(n, k) = binomial(n, k) * binomial(n+k, n-k).

Original entry on oeis.org

1, 6, 1, 18, 15, 1, 40, 90, 28, 1, 75, 350, 280, 45, 1, 126, 1050, 1680, 675, 66, 1, 196, 2646, 7350, 5775, 1386, 91, 1, 288, 5880, 25872, 34650, 16016, 2548, 120, 1, 405, 11880, 77616, 162162, 126126, 38220, 4320, 153, 1, 550, 22275, 205920, 630630
Offset: 1

Views

Author

Benoit Cloitre, Mar 20 2004

Keywords

Comments

Related to the coefficients of x^k y^k in the n-th power of x^2 + x*y + 2*x + y + 1. - F. Chapoton, Jan 04 2025

Examples

			Triangle starts:
  [1]   1;
  [2]   6,    1;
  [3]  18,   15,     1;
  [4]  40,   90,    28,     1;
  [5]  75,  350,   280,    45,     1;
  [6] 126, 1050,  1680,   675,    66,    1;
  [7] 196, 2646,  7350,  5775,  1386,   91,   1;
  [8] 288, 5880, 25872, 34650, 16016, 2548, 120, 1;
		

Crossrefs

First column = A002411, second column = A001297, third column = A107418, fourth column = A105251, fifth column = A104673.
Main diagonal = 1, second diagonal = A000384.
Cf. A063007, A006480 (central terms), A082759 (row sums + 1).
Cf. A104684.

Programs

  • Maple
    T := (n, k) -> binomial(n, k) * binomial(n+k, n-k):  # Peter Luschny, Jan 04 2025
  • PARI
    T(n,k) = binomial(n,k)*binomial(n+k,n-k)

Formula

T(n, k) = [x^(n-k)] F(-n, -n-k; 1; x). - Paul Barry, Sep 04 2008