cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A092372 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by zero loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 3, 8, 70, 526, 13167, 280772, 20048886, 1215446794, 247358122583, 42663813089328, 24736951705389664, 12142696908022734304, 20054892679528741176540, 28022410984084414473869168
Offset: 1

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= c[(n-2*m)/2, n] + Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 0], {n, 1, 20}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = C_{n/2-m}(n) + Sum_{r=1..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 0).

A092373 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by one loop is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 29, 98, 6081, 63697, 9938153, 312541502, 129127963303, 12001054360838, 13446619579882992, 3659571122336231532, 11267548349231085351832, 8927178836248655700988852, 76148331063818213217859922220
Offset: 2

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 1], {n, 2, 20}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 1).

A092374 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by two loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 351, 1274, 744189, 8947743, 11416135802, 434427086992, 1338566241796974, 157000849238433534, 1228161523785291020355, 436532099633273680844304, 8925012390072153509699100030, 9502129655604190413091924623054
Offset: 4

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 2], {n, 4, 20}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m-2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 2).

A092375 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by three loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 4707, 17576, 112088578, 1441214058, 17605459620761, 743370332504726, 19997068111196867031, 2689483333931146069897, 171415422163184300298223345, 71911782152540818802247981150
Offset: 6

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 3], {n, 6, 20}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 3).

A092376 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by four loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 66197, 250952, 18952950999, 253708881459, 32572923537006164, 1470573601262677388, 380591600530893567736185, 56147188534659327496920501, 32148338107501290909364945321743
Offset: 8

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 4], {n, 8, 26}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = C_{n/2-m}(n) + Sum_{r=1..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 4).

A092377 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by five loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 956385, 3660540, 3447133563336, 47425519612650, 68120063087909550454, 3225625946195290369800, 8591036125440276726886638297, 1356789922392932853852561183624, 7479333946536834590456926740361593541
Offset: 10

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 5], {n, 10, 30}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = C_{n/2-m}(n) + Sum_{r=1..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 5).

A092378 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by six loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 14061141, 54177740, 659506609478464, 9256643548177084, 155695310201316677915943, 7642657907144601059593232, 220353621720787947087602631723527
Offset: 12

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2-m -2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 6], {n, 12, 30}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 6).

A092381 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by nine loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 47564380971, 185410909790, 5599434135148010392903, 81562945655108319592717, 2647122748975437613370942794822122, 139318635878972598351963980703033608, 6292966726927006717847495753884145618797281792
Offset: 18

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= c[(n-2*m)/2, n] + Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 9], {n, 18, 40}] (* G. C. Greubel, Nov 16 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 9).

Extensions

More terms added by G. C. Greubel, Nov 16 2019

A092382 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by ten loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 723668784231, 2827767747950, 1193097790725426305663064, 17520037013918467453246138, 7392624504986931437972335103490414473, 395235071756082109802989440265119512888, 218243704050866770455587351635302655565432102527624
Offset: 20

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= c[(n-2*m)/2, n] + Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 10], {n, 20, 40}] (* G. C. Greubel, Nov 16 2019 *)

Formula

Even n: Q(n, m) = C_{n/2-m}(n) + Sum_{r=1..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 10).

Extensions

More terms added by G. C. Greubel, Nov 16 2019

A092379 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by seven loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 209295261, 810375650, 130981854694547781, 1866712378783655407, 380792413068640291929758918, 19226936188283951521093833164, 6245082121880029165837197634771465822, 1084566535537396419423204907970597478243
Offset: 14

Views

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 7], {n, 14, 30}] (* Jean-François Alcover, Sep 11 2012; modified by G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 7).

Extensions

More terms added and edited by G. C. Greubel, Nov 15 2019
Showing 1-10 of 10 results.