cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092387 a(n) = Fibonacci(2*n+1) + Fibonacci(2*n-1) + 2.

Original entry on oeis.org

5, 9, 20, 49, 125, 324, 845, 2209, 5780, 15129, 39605, 103684, 271445, 710649, 1860500, 4870849, 12752045, 33385284, 87403805, 228826129, 599074580, 1568397609, 4106118245, 10749957124, 28143753125, 73681302249, 192900153620
Offset: 1

Views

Author

Benoit Cloitre, Mar 20 2004

Keywords

Comments

Let b(k)=sum(i=1,k,F(2*n*i)*binomial(k,i)) where F(k) denotes the k-th Fibonacci number. The (b(k)) sequence satisfies the recursion: b(k)=a(n)*(b(k-1)-b(k-2)).
Same as the number of Kekulé structures in polyphenanthrene in terms of the number of hexagons. - Parthasarathy Nambi, Aug 22 2006

Crossrefs

Equals A065034(n)+1.

Programs

  • Magma
    I:=[5, 9, 20]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 06 2012
  • Mathematica
    CoefficientList[Series[-(5-11*x+4*x^2)/((x-1)(x^2-3*x+1)),  {x,0,30}],x] (* Vincenzo Librandi, May 06 2012 *)

Formula

a(1)=5, a(2)=9, a(3)=20, a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
a(n) = 3 + floor((1+phi)^n) where phi = (1+sqrt(5))/2.
a(n) = A005248(n) + 2.
From R. J. Mathar, Mar 18 2009: (Start)
G.f.: -x*(5 - 11*x + 4*x^2)/((x-1)(x^2 - 3*x + 1)).
a(n+1) - a(n) = A002878(n). (End)

Extensions

Better definition from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 20 2004