A092393 Triangle read by rows: T(n,k) = (n+k)*binomial(n,k) (for k=0..n-1).
1, 2, 6, 3, 12, 15, 4, 20, 36, 28, 5, 30, 70, 80, 45, 6, 42, 120, 180, 150, 66, 7, 56, 189, 350, 385, 252, 91, 8, 72, 280, 616, 840, 728, 392, 120, 9, 90, 396, 1008, 1638, 1764, 1260, 576, 153, 10, 110, 540, 1560, 2940, 3780, 3360, 2040, 810, 190, 11, 132, 715
Offset: 1
Examples
Triangle starts: 1; 2, 6; 3, 12, 15; 4, 20, 36, 28; 5, 30, 70, 80, 45; 6, 42, 120, 180, 150, 66; ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened)
Crossrefs
Cf. A029635.
Programs
-
Maple
A092393 := proc(n,k) (n+k)*binomial(n,k) ; end proc: seq(seq( A092393(n,k),k=0..n-1),n=1..12) ; # R. J. Mathar, Nov 02 2023
-
Mathematica
A092393row[n_]:=Table[(n+k)Binomial[n,k],{k,0,n-1}];Array[A092393row,10] (* Paolo Xausa, Nov 02 2023 *)
-
PARI
T(n,k)=binomial(n,k)*(n+k)
Formula
First column = positive integers;
second column = A002378;
third column = A077414;
main diagonal (i.e., T(n,n) = (n+n)*binomial(n,n) = 2n, which is not included in this sequence) = even integers;
second diagonal = A000384.
Row sums = 1, 8, 30, 88, 230,... = A167667(n)-2n. - R. J. Mathar, Nov 02 2023