A092433 Positive numbers from the children's game "Buzz" or "Sevens": positive integers which are divisible by seven, or which contain a seven as a digit.
7, 14, 17, 21, 27, 28, 35, 37, 42, 47, 49, 56, 57, 63, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 84, 87, 91, 97, 98, 105, 107, 112, 117, 119, 126, 127, 133, 137, 140, 147, 154, 157, 161, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 182, 187, 189, 196
Offset: 1
Examples
7 is the first term, both because it is a multiple of 7 and because it contains a 7. 14 is next, being a multiple of 7. 17 is the third term: it contains a 7.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Darren Gerson, Buzz.
- LoGirl, The game 887, Japanese TV program for junior high and primary school student, Jul 11 2016
- Partygamecentral.com, Buzz [broken link]
- TeachingTips, Academic Games, Buzz.
Crossrefs
Programs
-
Maple
isA092433 := proc(n) if modp(n,7) = 0 then true; else convert(convert(n,base,10),set) ; if 7 in % then true; else false; end if; end if; end proc: for n from 1 to 200 do if isA092433(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jul 19 2016
-
Mathematica
Select[Range[300], Mod[ #, 7] == 0 || MemberQ[IntegerDigits[ # ], 7] &]
-
PARI
is(n) = n % 7 == 0 || setsearch(Set(digits(n)),7) \\ David A. Corneth, Oct 01 2019, simplified by M. F. Hasler, Oct 12 2020
Formula
Integers n for which the coefficient of x^n is nonzero in x^7 / (1 - x^7) + Sum_{k>=0} x^(7*10^k)*(1 - x^(10^k)) / ((1 - x)*(1 - x^(10^(k+1)))).
Comments