cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A376047 Complement of A092433.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 80, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 113, 114, 115, 116, 118, 120
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2024

Keywords

Comments

Contains 114.

Crossrefs

Extensions

More than the usual number of terms are shown, to distinguish this from other sequences.

A092451 Numbers that either contain the digit 2 or are divisible by 2.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 121
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,140],DigitCount[#,10,2]>0||Divisible[ #,2]&] (* Harvey P. Dale, Jun 28 2011 *)
    Select[Range[0, 300], Mod[#, 2] == 0||MemberQ[IntegerDigits[#], 2] &] (* Vincenzo Librandi, Jul 19 2016 *)
  • PARI
    isok(n) = !(n % 2) || vecsearch(vecsort(digits(n,2),,8),2); \\ Michel Marcus, Jul 19 2016

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004

A092457 Numbers that either contain the digit 9 or are divisible by 9.

Original entry on oeis.org

0, 9, 18, 19, 27, 29, 36, 39, 45, 49, 54, 59, 63, 69, 72, 79, 81, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 108, 109, 117, 119, 126, 129, 135, 139, 144, 149, 153, 159, 162, 169, 171, 179, 180, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 207, 209, 216, 219
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 300], Mod[#, 9] == 0||MemberQ[IntegerDigits[#], 9] &] (* Vincenzo Librandi, Jul 19 2016 *)

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004
Added missing term 199 by Vincenzo Librandi, Jul 19 2016

A092453 Numbers that either contain the digit 4 or are divisible by 4.

Original entry on oeis.org

0, 4, 8, 12, 14, 16, 20, 24, 28, 32, 34, 36, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 56, 60, 64, 68, 72, 74, 76, 80, 84, 88, 92, 94, 96, 100, 104, 108, 112, 114, 116, 120, 124, 128, 132, 134, 136, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 154, 156
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 300], Mod[#, 4] == 0||MemberQ[IntegerDigits[#], 4] &] (* Vincenzo Librandi, Jul 19 2016 *)

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004

A092456 Numbers that either contain the digit 8 or are divisible by 8.

Original entry on oeis.org

0, 8, 16, 18, 24, 28, 32, 38, 40, 48, 56, 58, 64, 68, 72, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 96, 98, 104, 108, 112, 118, 120, 128, 136, 138, 144, 148, 152, 158, 160, 168, 176, 178, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 192, 198, 200, 208, 216, 218
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 300], Mod[#, 8] == 0||MemberQ[IntegerDigits[#], 8] &] (* Vincenzo Librandi, Jul 19 2016 *)

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004
Added missing term 188 by Vincenzo Librandi, Jul 19 2016

A092452 Numbers that either contain the digit 3 or are divisible by 3.

Original entry on oeis.org

0, 3, 6, 9, 12, 13, 15, 18, 21, 23, 24, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 45, 48, 51, 53, 54, 57, 60, 63, 66, 69, 72, 73, 75, 78, 81, 83, 84, 87, 90, 93, 96, 99, 102, 103, 105, 108, 111, 113, 114, 117, 120, 123, 126, 129, 130, 131, 132, 133, 134, 135, 136, 137
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 150], Mod[#, 3] == 0||MemberQ[IntegerDigits[#], 3] &] (* Vincenzo Librandi, Jul 19 2016 *)

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004
Added missing term 133 by Vincenzo Librandi, Jul 19 2016

A092454 Numbers that either contain the digit 5 or are divisible by 5.

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Union[Join[5 Range[100],Select[Range[500],MemberQ[IntegerDigits[#],5]&]]] (* Harvey P. Dale, Dec 08 2010 *)
  • PARI
    ll(n)=length(Str(n)) f(n,m)=(n%10^(ll(n)-m) - n%10^(ll(n)-m-1))/10^(ll(n)-m-1) a(n,m)=s=0;for(i=0,ll(n),if(f(n,i)==m,s=s+1,s=s));return(s) for (j=0,300,if(Mod(j,5)==0 || a(j,5)==1,print1(j,",")))

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004

A092455 Numbers that either contain the digit 6 or are divisible by 6.

Original entry on oeis.org

0, 6, 12, 16, 18, 24, 26, 30, 36, 42, 46, 48, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 78, 84, 86, 90, 96, 102, 106, 108, 114, 116, 120, 126, 132, 136, 138, 144, 146, 150, 156, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 174, 176, 180, 186, 192, 196
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,200],Divisible[#,6]||DigitCount[#,10,6]>0&] (* Harvey P. Dale, Jun 04 2011 *)
    Select[Range[0, 300], Mod[#, 6] == 0||MemberQ[IntegerDigits[#], 6] &] (* Vincenzo Librandi, Jul 19 2016 *)

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004
Corrected by Harvey P. Dale, Jun 04 2011

A325114 Integers k such that no nonzero subsequence of the decimal representation of k is divisible by 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 80, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 113, 115, 116, 118, 120
Offset: 1

Views

Author

Jonathan Kal-El Peréz, Mar 27 2019

Keywords

Comments

Does not contain 114 (helps to distinguish this from related sequences).
From David A. Corneth, Sep 10 2024: (Start)
Any term greater than 10^6 must have a digit 0. Proof: Any term between 10^6 and 10^7 has a 0.
Proof via induction and contradiction; any 7 digital number term has a digit 0. Suppose some number with k with q > 7 digits has no digit 0. Then floor(k/10) is a term and has no digit 0 and q - 1 digits. But there is no such number. A contradiction. Therefore any term with at least 7 digits has a digit 0. (End)

Crossrefs

Cf. A014261 (for 2), A325112 (for 3), A325113 (for 4), A261189 (for 5).
See A376046 for complement.

Programs

  • Mathematica
    With[{k = 7}, Select[Range@ 100, NoneTrue[DeleteCases[FromDigits /@ Rest@ Subsequences[IntegerDigits@ #], 0], Mod[#, k] == 0 &] &]] (* Michael De Vlieger, Mar 31 2019 *)
  • PARI
    \\ See Corneth link

Extensions

More than the usual number of terms are shown in order to distinguish this from a new sequence arising from the game of "buzz" (cf. A092433). - N. J. A. Sloane, Sep 09 2024

A328018 If n is the k-th number divisible by 7 or containing a digit 7 (in base 10) then a(n) = a(k) otherwise a(n) = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 11, 12, 13, 2, 15, 16, 3, 18, 19, 20, 4, 22, 23, 24, 25, 26, 5, 6, 29, 30, 31, 32, 33, 34, 1, 36, 8, 38, 39, 40, 41, 9, 43, 44, 45, 46, 10, 48, 11, 50, 51, 52, 53, 54, 55, 12, 13, 58, 59, 60, 61, 62, 2, 64, 65, 66, 15, 68, 69, 16, 3
Offset: 1

Views

Author

Rens Reus and David A. Corneth, Oct 01 2019

Keywords

Examples

			Let F be the sequence of integers divisible by 7 or containing a digit 7 (A092433) with offset 1.
Sequence starts with the positive integers S.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, ...
Replace all integers in S that are also in F with the index of occurrence in F. Doing this gives:
1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 11, 12, 13, 2, 15, 16, 3, 18, 19, 20, 4, 22, 23, 24, 25, 26, 5, 6, 29, 30, 31, 32, 33, 34, 7, 36, 8, 38, 39, 40, ...
At position 35, we see 7, which is the first element in F so we replace this 7 with 1. This gives:
1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 11, 12, 13, 2, 15, 16, 3, 18, 19, 20, 4, 22, 23, 24, 25, 26, 5, 6, 29, 30, 31, 32, 33, 34, 1, 36, 8, 38, 39, 40, ...
Keep replacing numbers in S that are also in F with the index of occurrence they have in F. That is: if s in S is F(i) then set replace s with i.
		

Crossrefs

Cf. A092433.

Programs

  • Mathematica
    Block[{nn = 70, s}, s = Select[Range[nn], Or[Mod[#, 7] == 0, DigitCount[#, 10, 7] > 0] &]; Array[If[FreeQ[s, #], #, FirstPosition[s, #][[1]] ] &, nn]] (* Michael De Vlieger, Oct 17 2019 *)
  • PARI
    See Corneth link
    
  • PARI
    k=0; for (n=1, #(a=vector(71)), print1 (a[n]=if (n%7==0 || setsearch(Set(digits(n)),7), a[k++], n) ", ")) \\ Rémy Sigrist, Nov 11 2019
    
  • Python
    def first(n):
        t = []
        q = 0
        for i in range(1, n+1):
            if i % 7 == 0 or "7" in str(i):
                q += 1
                t.append(t[q-1])
            else:
                t.append(i)
        return(t) # David A. Corneth, Jul 10 2025
Showing 1-10 of 12 results. Next