A356647 Concatenation of runs {y..x} for each x>=1, using each y from 1 to x before moving on to the next value for x.
1, 1, 2, 2, 1, 2, 3, 2, 3, 3, 1, 2, 3, 4, 2, 3, 4, 3, 4, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 4, 5, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6, 4, 5, 6, 5, 6, 6, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 4, 5, 6, 7, 5, 6, 7, 6, 7, 7, 1, 2, 3
Offset: 1
Examples
1 1 2 _ 2 1 2 3 _ 2 3 _ _ 3 1 2 3 4 _ 2 3 4 _ _ 3 4 _ _ _ 4...
Links
- The Nineteenth Byte Stack Exchange chat room, Message regarding this sequence. Some replies are programs to generate terms of the sequence.
Programs
-
JavaScript
a=n=>{for(let i=1;++i;){for(let j=0;++j
-
MATLAB
function a = A356647( max_x ) a = cell2mat(arrayfun(@(x)(cell2mat(arrayfun(@(y)([y:x]),[1:x],'UniformOutput', false))) ... ,[1:max_x],'UniformOutput', false)); end % Thomas Scheuerle, Sep 30 2022
-
Mathematica
Print @ Flatten @ (Reverse@FoldList[Join[#2,#]&, {#}&/@Reverse@#]& /@ FoldList[Join, Table[{n},{n,1,10}]])
-
Python
from itertools import count, islice def agen(): # generator of terms for k in count(1): for j in range(1, k+1): yield from range(j, k+1) print(list(islice(agen(), 87))) # Michael S. Branicky, Oct 11 2022
Formula
a(n*(n^2 + 5)/6) = a(A004006(n)) = n. This is the earliest appearance of n. - Thomas Scheuerle, Sep 30 2022
Comments