cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092439 Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.

Original entry on oeis.org

0, 0, 6, 30, 140, 560, 2058, 7098, 23472, 75372, 237182, 735878, 2260596, 6896136, 20933778, 63325170, 191089112, 575626052, 1731858246, 5206059774, 15640198620, 46966732320, 140996664986, 423191320490, 1269993390720
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004

Keywords

Examples

			a(3) = (3^5+(-1)^5)/2 - 2^5 - 5*(2^4-1) + 4^2 = 30.
		

References

  • James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).

Crossrefs

Programs

  • Mathematica
    Table[(3^(n+2)+(-1)^(n+2))/2-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{9,-30,42,-9,-39,40,-12},{0,0,6,30,140,560,2058},30] (* Harvey P. Dale, Nov 27 2011 *)

Formula

a(n) = (3^(n+2)+(-1)^(n+2))/2-2^(n+2)-(n+2)*(2^(n+1)-1)+(n+1)^2.
a(n) = A092437(n, n+2), for n >= 2.
a(n) = A046717(n+2)-2^(n+2)-(n+2)*(2^(n+1)-1)+(n+1)^2.
a(n) = 9*a(n-1)-30*a(n-2)+42*a(n-3)-9*a(n-4)-39*a(n-5)+40*a(n-6)-12*a(n-7). - Harvey P. Dale, Nov 27 2011
G.f.: 2*x^2*(6*x^4-26*x^3+25*x^2-12*x+3)/((x-1)^3*(x+1)*(2*x-1)^2*(3*x-1)). - Colin Barker, Nov 22 2012
E.g.f.: exp(x)*(4*x + x^2 - 4*(2 + x)*cosh(x) - 4*(2 + x)*sinh(x) + 2*(2*cosh(x) + sinh(x))^2). - Stefano Spezia, Sep 01 2025