A092479 T(n,k) is the number of numbers <= 2^n having exactly k prime factors (with repetitions), 0<=k<=n, triangle read by rows.
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 6, 2, 1, 1, 11, 10, 7, 2, 1, 1, 18, 22, 13, 7, 2, 1, 1, 31, 42, 30, 14, 7, 2, 1, 1, 54, 82, 60, 34, 15, 7, 2, 1, 1, 97, 157, 125, 71, 36, 15, 7, 2, 1, 1, 172, 304, 256, 152, 77, 37, 15, 7, 2, 1, 1, 309, 589, 513, 325, 168, 81, 37, 15, 7, 2, 1, 1, 564, 1124, 1049, 669, 367, 177, 83, 37, 15, 7, 2, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 2, 1; 1, 4, 2, 1; 1, 6, 6, 2, 1; 1, 11, 10, 7, 2, 1; 1, 18, 22, 13, 7, 2, 1; ...
Crossrefs
Cf. A001222.
Programs
-
Mathematica
row[n_] := Module[{i, v = Table[0, {n}]}, For[i = 2, i <= 2^n, i++, v[[PrimeOmega[i]]]++]; Prepend[v, 1]]; Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Sep 23 2021, after PARI code *)
-
PARI
row(n) = {v = vector(n); for (i=2, 2^n, v[bigomega(i)]++;); concat(1, v);} tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Aug 11 2015
Formula
T(n,0) = 1; T(n,1) = A007053(n,1) for n>0; T(n,n) = 1.
Sum_{k=0..n} T(n,k) = 2^n.