A092543 Table below read by antidiagonals alternately upwards and downwards.
1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 12, 11, 10, 9, 8
Offset: 1
References
- Amir D. Aczel, "The Mystery of the Aleph, Mathematics, the Kabbalah and the Search for Infinity", Barnes & Noble, NY 2000, page 112.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's MathWorld, Pairing functions
Programs
-
Maple
seq(seq(i-abs(i-j),j=1..2*i-1),i=2..20,2); # Robert Israel, Mar 01 2016
-
Mathematica
Table[ Join[Range[2n], Reverse@Range[2n - 1]], {n, 7}] // Flatten (* Robert G. Wilson v, Sep 28 2006 *)
Formula
T(r,c)=c.
a(n) = ((-1)^t+1)*i/2-((-1)^t-1)*j/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 24 2012
G.f.: (1-x)^(-2)*Sum_{i>=0} x^(2*i^2+i+1)*(1-x^(2*i+2))^2. - Robert Israel, Mar 01 2016
Comments