cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092565 Triangle of coefficients T(n,k) (n>=0, 0<=k<=2*n), read by rows, where the n-th row polynomial equals the numerator of the n-th convergent of the continued fraction [1+x+x^2;1+x+x^2,1+x+x^2,...] for n>0, with the zeroth row defined as T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 2, 1, 3, 5, 8, 7, 6, 3, 1, 5, 10, 19, 22, 22, 16, 10, 4, 1, 8, 20, 42, 58, 69, 63, 49, 30, 15, 5, 1, 13, 38, 89, 142, 191, 206, 191, 146, 95, 50, 21, 6, 1, 21, 71, 182, 327, 491, 602, 637, 573, 447, 296, 167, 77, 28, 7, 1, 34, 130, 363, 722, 1191, 1626
Offset: 0

Views

Author

Paul D. Hanna, Feb 28 2004

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(2,0),(1,1),(1,2). - Joerg Arndt, Jul 01 2011
Diagonal forms A092566, row sums form A006190. Column T(n,0) forms Fibonacci numbers A000045, T(n,1) forms A001629.

Examples

			Ratio of row polynomials R(3)/R(2) = (3+5*x+8*x^2+7*x^3+6*x^4+3*x^5+x^6)/(2+2*x+3*x^2+2*x^3+x^4) = [1+x+x^2;1+x+x^2,1+x+x^2].
Rows begin:
  1;
  1, 1, 1;
  2, 2, 3, 2, 1;
  3, 5, 8, 7, 6, 3, 1;
  5, 10, 19, 22, 22, 16, 10, 4, 1;
  8, 20, 42, 58, 69, 63, 49, 30, 15, 5, 1;
  13, 38, 89, 142, 191, 206, 191, 146, 95, 50, 21, 6, 1;
  21, 71, 182, 327, 491, 602, 637, 573, 447, 296, 167, 77, 28, 7, 1;
  34, 130, 363, 722, 1191, 1626, 1921, 1958, 1752, 1366, 931, 546, 273, 112, 36, 8, 1;
  ...
		

Crossrefs

Programs

  • Maple
    T:= proc(x, y) option remember; `if`(y<0 or y>2*x, 0, `if`(x=0, 1,
          add(T(x-l[1], y-l[2]), l=[[1, 0], [2, 0], [1, 1], [1, 2]])))
        end:
    seq(seq(T(n,k), k=0..2*n), n=0..10); # Alois P. Heinz, Apr 16 2013
  • Mathematica
    A037027[n_, k_] := Sum[Binomial[k+j, k]*Binomial[j, n-j-k], {j, 0, n-k}]; A037027[n_, 0] = Fibonacci[n + 1]; row[n_] := CoefficientList[ Sum[A037027[n, k] x^k (1+x)^k, {k, 0, n}], x]; Flatten[Table[row[n], {n, 0, 8}]][[1 ;; 70]] (* Jean-François Alcover, Jul 18 2011 *)
  • PARI
    T(n,k)=if(2*n
    				
  • PARI
    /* same as in A092566, but last line (output) replaced by the following */
    /* show as triangle (0<=k<=2*n): */
    {for (n=1,N, for (k=1,2*n-1, print1(M[n,k],", "); ); print(); );}
    /* Joerg Arndt, Jul 01 2011 */

Formula

n-th row polynomial R(n) = Sum_{k=0..n} A037027(n, k)*x^k*(1+x)^k; R(n+1)/R(n) = [1+x+x^2;1+x+x^2, ...(n+1)times..., 1+x+x^2] for n>=0; R(0)=1.