A092572 Numbers of the form x^2 + 3y^2 where x and y are positive integers.
4, 7, 12, 13, 16, 19, 21, 28, 31, 36, 37, 39, 43, 48, 49, 52, 57, 61, 63, 64, 67, 73, 76, 79, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 124, 127, 129, 133, 139, 144, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199
Offset: 1
Keywords
Examples
7 is of the specified form, since 2^2 + 3 * 1^2 = 7. So is 12, since 3^2 + 3 * 1^2 = 12, and 13, with 1^2 + 3 * 2^2 = 13.
References
- Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem. New York: Springer-Verlag (1979): 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- E. Akhtarkavan, M. F. M. Salleh and O. Sidek, Multiple Descriptions Video Coding Using Coinciding Lattice Vector Quantizer for H.264/AVC and Motion JPEG2000, World Applied Sciences Journal 21 (2): 157-169, 2013. - From _N. J. A. Sloane_, Feb 11 2013
- Eric Weisstein's World of Mathematics, Eulers 6n Plus 1 Theorem
Programs
-
Maple
N:= 1000: # to get all terms <= N S:= {seq(seq(x^2 + 3*y^2, x = 1 .. floor(sqrt(N - 3*y^2))), y=1..floor(sqrt(N/3-1)))}: sort(convert(S,list)); # Robert Israel, Apr 03 2017
-
Mathematica
Union[Flatten[Table[a^2 + 3b^2, {a, 20}, {b, Ceiling[Sqrt[(400 - a^2)/3]]}]]] (* Alonso del Arte, Jul 19 2012 *)
Comments