cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A155560 Intersection of A000404 and A092572: N = a^2 + b^2 = c^2 + 3d^2 with a,b,c,d>0.

Original entry on oeis.org

13, 37, 52, 61, 73, 97, 100, 109, 117, 148, 157, 169, 181, 193, 208, 229, 241, 244, 277, 292, 313, 325, 333, 337, 349, 373, 388, 397, 400, 409, 421, 433, 436, 457, 468, 481, 541, 549, 577, 592, 601, 613, 628, 637, 657, 661, 673, 676, 709, 724, 733, 757, 769
Offset: 1

Views

Author

M. F. Hasler, Jan 24 2009

Keywords

Comments

Nonsquare terms of A155563. - Joerg Arndt, Jan 11 2015

Examples

			a(1)=13 is the least number that can be written as A+B and C+3D where A,B,C,D are positive squares (namely 13 = 2^2 + 3^2 = 1^2 + 3*2^2).
a(2)=37 is the second smallest number which figures in A000404 and in A092572 as well.
		

Programs

  • PARI
    isA155560(n /* omit optional 2nd arg for the present sequence */, c=[3,1]) = { for(i=1,#c,for(b=1,sqrtint((n-1)\c[i]),issquare(n-c[i]*b^2)&next(2));return);1}
    for( n=1,10^3, isA155560(n) & print1(n","))
    
  • PARI
    is(n)=!issquare(n) && #bnfisintnorm(bnfinit(z^2+z+1), n) && #bnfisintnorm(bnfinit(z^2+1), n);
    select(n->is(n), vector(1500,j,j)) \\ Joerg Arndt, Jan 11 2015

A155712 Intersection of A092572 and A155716: N = a^2 + 3b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

7, 28, 31, 49, 63, 73, 79, 97, 100, 103, 112, 124, 127, 151, 175, 193, 196, 199, 217, 223, 241, 252, 271, 279, 292, 313, 316, 337, 343, 367, 388, 400, 409, 412, 433, 439, 441, 448, 457, 463, 484, 487, 496, 508, 511, 553, 567, 577, 601, 604, 607, 631, 657, 673
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

From Robert Israel, Jan 19 2025: (Start)
If k is a term, then so is j^2 * k for all positive integers j.
The primes in this sequence appear to be A033199.
(End)

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    A:= {seq(seq(a^2 + 3*b^2, b=1 .. floor(sqrt((N-a^2)/3))),a=1..floor(sqrt(N)))}
       intersect {seq(seq(c^2 + 6*d^2, d = 1 .. floor(sqrt((N-c^2)/6))),c=1..floor(sqrt(N)))}:
    sort(convert(A,list)); # Robert Israel, Jan 19 2025
  • PARI
    isA155712(n,/* optional 2nd arg allows to get other sequences */c=[6,3]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) && next(2)); return);1}
    for( n=1,999, isA155712(n) && print1(n",")) \\ Update to modern PARI syntax (& -> &&) by M. F. Hasler, Jan 18 2025

A155574 Intersection of A154777 and A092572: N = a^2 + 2b^2 = c^2 + 3d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

12, 19, 36, 43, 48, 57, 67, 73, 76, 97, 108, 129, 139, 144, 147, 163, 171, 172, 192, 193, 201, 211, 219, 228, 241, 268, 283, 291, 292, 300, 304, 307, 313, 324, 331, 337, 361, 379, 387, 388, 409, 417, 432, 433, 441, 457, 475, 484, 489, 499, 507, 513, 516, 523
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155564 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155574(n,/* optional 2nd arg allows us to get other sequences */c=[3,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155574(n) & print1(n","))

A155710 Intersection of A092572 and A154778: N = a^2 + 3b^2 = c^2 + 5d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

21, 36, 49, 61, 84, 109, 129, 144, 181, 189, 196, 201, 229, 241, 244, 301, 309, 324, 336, 349, 381, 409, 421, 436, 441, 469, 489, 516, 525, 541, 549, 576, 601, 661, 669, 709, 721, 724, 756, 769, 784, 804, 829, 849, 889, 900, 916, 921, 964, 976, 981, 1009, 1021
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155570 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155710(n,/* use optional 2nd arg to get other analogous sequences */c=[5,3]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1111, isA155710(n) & print1(n","))

A380295 Numbers that can be written as a^2 + 3*b^2 for some a, b in A155716 and also as c^2 + 6*d^2 for some c, d in A092572.

Original entry on oeis.org

1552, 1975, 4753, 5047, 5425, 7825, 8167, 9175, 10096, 11025, 11536, 12007, 16528, 16807, 16993, 18823, 19600, 23863, 24832, 25633, 25767, 26983, 27223, 29200, 30919, 31600, 31927, 32791, 33175, 35329, 35623, 41953, 43063, 43687, 51943, 54775, 57303, 59575, 60016, 61783, 63175, 71575, 72103
Offset: 1

Views

Author

Robert Israel, Jan 19 2025

Keywords

Comments

If k is a term, then so is j^4 * k for all positive integers j.

Examples

			a(5) = 5425 is a term because 5425 = 73^2 + 6 * 4^2 = 25^2 + 3 * 40^2 with 73 = 5^2 + 3 * 4^2, 4 = 1^2 + 3 * 1^2, 25 = 1^2 + 6 * 2^2 and 40 = 4^2 + 6 * 2^2.
		

Crossrefs

Programs

  • Maple
    N:= 500: # for terms <= N^2
    A:= {seq(seq(a^2 + 3*b^2,a=1..floor(sqrt(N-3*b^2))),b=1..floor(sqrt(N/3)))}:
    B:= {seq(seq(a^2 + 6*b^2,a=1..floor(sqrt(N-6*b^2))),b=1..floor(sqrt(N/6)))}:
    C:= select(`<=`,{seq(seq(a^2+6*b^2,a=A),b=A)},N^2):
    E:= select(`<=`,{seq(seq(a^2+3*b^2,a=B),b=B)},N^2):
    sort(convert(C intersect E,list));

A155571 Intersection of A000404, A092572 and A154778: N = a^2 + b^2 = c^2 + 3d^2 = e^2 + 5f^2 for some positive integers a,b,c,d,e,f.

Original entry on oeis.org

61, 109, 181, 229, 241, 244, 349, 409, 421, 436, 541, 549, 601, 661, 709, 724, 769, 829, 900, 916, 964, 976, 981, 1009, 1021, 1069, 1129, 1201, 1225, 1249, 1321, 1381, 1396, 1429, 1489, 1521, 1525, 1549, 1609, 1621, 1629, 1636, 1669, 1684, 1741, 1744, 1789
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155571(n,/* optional 2nd arg allows us to get other sequences */c=[5,3,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1999, isA155571(n) & print1(n","))

A155573 Intersection of A000404, A154777 and A092572: N = a^2 + b^2 = c^2 + 2d^2 = e^2 + 3f^2 for some positive integers a,b,c,d,e,f.

Original entry on oeis.org

73, 97, 193, 241, 292, 313, 337, 388, 409, 433, 457, 577, 601, 657, 673, 769, 772, 873, 900, 937, 964, 1009, 1033, 1129, 1153, 1156, 1168, 1201, 1249, 1252, 1297, 1321, 1348, 1489, 1521, 1552, 1609, 1636, 1657, 1732, 1737, 1753, 1777, 1801, 1825, 1828
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155573(n,/* optional 2nd arg allows us to get other sequences */c=[3,2,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1999, isA155573(n) & print1(n","))

A003136 Loeschian numbers: numbers of the form x^2 + xy + y^2; norms of vectors in A2 lattice.

Original entry on oeis.org

0, 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 49, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 144, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192
Offset: 1

Views

Author

Keywords

Comments

Equally, numbers of the form x^2 - xy + y^2. - Ray Chandler, Jan 27 2009
Also, numbers of the form X^2+3Y^2 (X=y+x/2, Y=x/2), cf. A092572. - Zak Seidov, Jan 20 2009
Theorem (Schering, Delone, Watson): The only positive definite binary quadratic forms that represent the same numbers are x^2+xy+y^2 and x^2+3y^2 (up to scaling). - N. J. A. Sloane, Jun 22 2014
Equivalently, numbers n such that the coefficient of x^n in Theta3(x)*Theta3(x^3) is nonzero. - Joerg Arndt, Jan 16 2011
Equivalently, numbers n such that the coefficient of x^n in a(x) (resp. b(x)) is nonzero where a(), b() are cubic AGM functions. - Michael Somos, Jan 16 2011
Relative areas of equilateral triangles whose vertices are on a triangular lattice. - Anton Sherwood (bronto(AT)pobox.com), Apr 05 2001
2 appended to a(n) (for positive n) corresponds to capsomere count in viral architectural structures (cf. A071336). - Lekraj Beedassy, Apr 14 2006
The triangle in A132111 gives the enumeration: n^2 + k*n + k^2, 0 <= k <= n.
The number of coat proteins at each corner of a triangular face of a virus shell. - Parthasarathy Nambi, Sep 04 2007
Numbers of the form (x^2 + y^2 + (x + y)^2)/2. If we let z = - x - y, then all the solutions to x^2 + y^2 + z^2 = k with x + y + z = 0 are k = 2a(n) for any n. - Jon Perry, Dec 16 2012
Sequence of divisors of the hexagonal lattice, except zero (where it is said that an integer n divides a lattice if there exists a sublattice of index n; example: 3 divides the hexagonal lattice). - Jean-Christophe Hervé, May 01 2013
Numbers of the form - (x*y + y*z + x*z) with x + y + z = 0. Numbers of the form x^2 + y^2 + z^2 - (x*y + y*z + x*z) = (x - y)*(x - z) + (y - x) * (y - z) + (z - x) * (z - y). - Michael Somos, Jun 26 2013
Equivalently, the existence spectrum of affine Mendelsohn triple systems, cf. A248107. - David Stanovsky, Nov 25 2014
Lame's solutions to the Helmholtz equation with Dirichlet boundary conditions on the unit-edged equilateral triangle have eigenvalues of the form: (x^2+x*y+y^2)*(4*Pi/3)^2. The actual set, starting at 1 and counting degeneracies, is given by A060428, e.g., the first degeneracy is 49 where (x,y)=(0,7) and (3,5). - Robert Stephen Jones, Oct 01 2015
Curvatures of spheres in one bowl of integers, the Loeschian spheres. Mod 12, numbers equal to 0, 1, 3, 4, 7, 9. - Ed Pegg Jr, Jan 10 2017
Norms of Eisenstein integers Z[omega] or k(rho). - Juris Evertovskis, Dec 07 2017
Named after the German economist August Lösch (1906-1945). - Amiram Eldar, Jun 10 2021
Starting from the second element, these and only these numbers of congruent equilateral triangles can be used to cover a regular tetrahedron without overlaps or gaps. - Alexander M. Domashenko, Feb 01 2025
This sequence is closed under multiplication: (x; y)*(u; v) = (x*v - y*u; x*u + y*(u + v)) for x*v - y*u >= 0 , (x; y)*(u; v) = (y*u - x*v; x*u + v*(x + y)) for x*v - y*u < 0. - Alexander M. Domashenko, Feb 03 2025

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 111.
  • Ivars Peterson, The Jungles of Randomness: A Mathematical Safari, John Wiley and Sons, (1998) pp. 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A092572 for numbers of form x^2 + 3 y^2 with positive x,y.
See A088534 for the number of representations.
Cf. A034020 (complement), A007645 (primes); partitions: A198726, A198727.

Programs

  • Haskell
    import Data.Set (singleton, union, fromList, deleteFindMin)
    a003136 n = a003136_list !! (n-1)
    a003136_list = f 0 $ singleton 0 where
    f x s | m < x ^ 2 = m : f x s'
    | otherwise = m : f x'
    (union s' $ fromList $ map (\y -> x'^2+(x'+y)*y) [0..x'])
    where x' = x + 1
    (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Julia
    function isA003136(n)
        n % 3 == 2 && return false
        n in [0, 1, 3] && return true
        M = Int(round(2*sqrt(n/3)))
        for y in 0:M, x in 0:y
            n == x^2 + y^2 + x*y && return true
        end
        return false
    end
    A003136list(upto) = [n for n in 0:upto if isA003136(n)]
    A003136list(192) |> println # Peter Luschny, Mar 17 2018
    
  • Magma
    [n: n in [0..192] | NormEquation(3, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
    
  • Maple
    readlib(ifactors): for n from 2 to 200 do m := ifactors(n)[2]: flag := 1: for i from 1 to nops(m) do if m[i,1] mod 3 = 2 and m[i,2] mod 2 = 1 then flag := 0; break fi: od: if flag=1 then printf(`%d,`,n) fi: od: # James Sellers, Dec 07 2000
  • Mathematica
    ok[n_] := Resolve[Exists[{x, y}, Reduce[n == x^2 + x*y + y^2, {x, y}, Integers]]]; Select[Range[0, 192], ok] (* Jean-François Alcover, Apr 18 2011 *)
    nn = 14; Select[Union[Flatten[Table[x^2 + x*y + y^2, {x, 0, nn}, {y, 0, x}]]], # <= nn^2 &] (* T. D. Noe, Apr 18 2011 *)
    QP = QPochhammer; s = QP[q]^3 / QP[q^3]/3 + O[q]^200; Position[ CoefficientList[s, q], n_ /; n != 0] - 1 // Flatten (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    isA003136(n)=local(fac,flag);if(n==0,1,fac=factor(n);flag=1;for(i=1,matsize(fac)[1],if(Mod(fac[i,1],3)==2 && Mod(fac[i,2],2)==1,flag=0));flag)
    
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2+z+1),n) \\ Ralf Stephan, Oct 18 2013
    
  • PARI
    x='x+O('x^200); p=eta(x)^3/eta(x^3); for(n=0, 199, if(polcoeff(p, n) != 0, print1(n, ", "))) \\ Altug Alkan, Nov 08 2015
    
  • PARI
    list(lim)=my(v=List(),y,t); for(x=0,sqrtint(lim\3), my(y=x,t); while((t=x^2+x*y+y^2)<=lim, listput(v,t); y++)); Set(v) \\ Charles R Greathouse IV, Feb 05 2017
    
  • PARI
    is_a003136(n) = !n || #qfbsolve(Qfb(1, 1, 1), n, 3) \\ Hugo Pfoertner, Aug 04 2023
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A003136_gen(): return (n for n in count(0) if all(e % 2 == 0 for p,e in factorint(n).items() if p % 3 == 2))
    A003136_list = list(islice(A003136_gen(),30)) # Chai Wah Wu, Jan 20 2022

Formula

Either n=0 or else in the prime factorization of n all primes of the form 3a+2 must occur to even powers only (there is no restriction of primes congruent to 0 or 1 mod 3).
If n is in the sequence, then n^k is in the sequence (but the converse is not true). n is in the sequence iff n^(2k+1) is in the sequence. - Ray Chandler, Feb 03 2009
A088534(a(n)) > 0. - Reinhard Zumkeller, Oct 30 2011
The sequence is multiplicative in the sense that if m and n are in the sequence, so is m*n. - Jon Perry, Dec 18 2012
Comments from Richard C. Schroeppel, Jul 20 2016: (Start)
The set is also closed under restricted division: If M and N are members, and M divides N, then N/M is a member.
If N == 2 (mod 3), N is not in the sequence.
The density of members (relative to the integers>0) gradually falls to 0. The density goes as O(1/sqrt(log N)). This implies that, if N is a member, the average expected number of representations of N is O(sqrt(log N)).
Representations usually come in sets of 6: (K,L), (K+L,-K), (K+L,-L) and their negatives. (End)
Since Q(zeta), where zeta is a primitive 3rd root of unity has class number 1, the situation as to whether an integer is of the form x^2 + xy + y^2 is similar to the situation with x^2 + y^2: n is of that form if and only if every prime p dividing n which is = 5 mod 6 divides it to an even power. The density of 1/sqrt(x) that Rich mentioned is an old result due to Landau. - Victor S. Miller, Jul 20 2016
From Juris Evertovskis, Dec 07 2017; Jan 01 2020: (Start)
In the prime factorization of n, let S_1 be the set of distinct prime factors p_i for which p_i == 1 (mod 3), let S_2 be the set of distinct prime factors p_j for which p_j == 2 (mod 3), and let M be the exponent of 3. Then n = 3^M * (Product_{p_i in S_1} p_i ^ e_i) * (Product_{p_j in S_2} p_j ^ e_j), and the number of solutions for x^2+xy+y^2=n is 6*Product_{p_i in S_1} (e_i + 1) if all e_j are even and 0 otherwise.
For all Löschian numbers there are nonnegative X,Y such that X^2+XY+Y^2=n. For x,y such that x^2+xy+y^2=n take X=min(|x|,|y|), Y=|x+y| if xy<0 and X=|x|, Y=|y| otherwise. (End)

A097268 Numbers that are both the sum of two nonzero squares and the difference of two nonzero squares.

Original entry on oeis.org

5, 8, 13, 17, 20, 25, 29, 32, 37, 40, 41, 45, 52, 53, 61, 65, 68, 72, 73, 80, 85, 89, 97, 100, 101, 104, 109, 113, 116, 117, 125, 128, 136, 137, 145, 148, 149, 153, 157, 160, 164, 169, 173, 180, 181, 185, 193, 197, 200, 205, 208, 212, 221, 225, 229, 232, 233
Offset: 1

Views

Author

Ray Chandler, Aug 19 2004

Keywords

Comments

Intersection of A000404 (sum of squares) and A024352 (difference of squares).
Also: Numbers of the form x^2+4y^2, where x and y are positive integers. Cf. A154777, A092572, A154778 for analogous sequences. - M. F. Hasler, Jan 24 2009

Crossrefs

Programs

  • PARI
    isA097268(n) = forstep( b=2,sqrtint(n-1),2, issquare(n-b^2) && return(1)) \\ M. F. Hasler, Jan 24 2009

A155716 Numbers of the form N = a^2 + 6b^2 for some positive integers a,b.

Original entry on oeis.org

7, 10, 15, 22, 25, 28, 31, 33, 40, 42, 49, 55, 58, 60, 63, 70, 73, 79, 87, 88, 90, 97, 100, 103, 105, 106, 112, 118, 121, 124, 127, 132, 135, 145, 150, 151, 154, 159, 160, 166, 168, 175, 177, 186, 193, 196, 198, 199, 202, 214, 217, 220, 223, 225, 231, 232, 240
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A002481 (which allows for a and b to be zero).
Primes are in A033199. - Bernard Schott, Sep 20 2019

Crossrefs

Programs

  • Mathematica
    With[{upto=240},Select[Union[#[[1]]^2+6#[[2]]^2&/@Tuples[ Range[Sqrt[ upto]], 2]],#<=upto&]] (* Harvey P. Dale, Aug 05 2016 *)
  • PARI
    isA155716(n,/* optional 2nd arg allows us to get other sequences */c=6) = { for(b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,999, isA155716(n) & print1(n","))
    
  • PARI
    upto(n) = my(res=List()); for(i=1,sqrtint(n),for(j=1, sqrtint((n - i^2) \ 6), listput(res, i^2 + 6*j^2))); listsort(res,1); res \\ David A. Corneth, Sep 18 2019
Showing 1-10 of 34 results. Next