cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A154777 Numbers of the form x^2 + 2*y^2 with positive integers x and y.

Original entry on oeis.org

3, 6, 9, 11, 12, 17, 18, 19, 22, 24, 27, 33, 34, 36, 38, 41, 43, 44, 48, 51, 54, 57, 59, 66, 67, 68, 72, 73, 75, 76, 81, 82, 83, 86, 88, 89, 96, 97, 99, 102, 107, 108, 113, 114, 118, 121, 123, 129, 131, 132, 134, 136, 137, 139, 144, 146, 147, 150, 152, 153, 162, 163
Offset: 1

Views

Author

M. F. Hasler, Jan 24 2009

Keywords

Comments

Subsequence of A002479 (which allows for x=0 and/or y=0). See there for further references. See A155560 cf for intersection of sequences of type (x^2 + k*y^2).
Also, subsequence of A000408 (with 2*y^2 = y^2 + z^2).
If m and n are terms also n*m is (in particular any power of term is also a term). - Zak Seidov, Nov 30 2011
If m is a term, 2*m is also. - Zak Seidov, Nov 30 2011
Select terms that are multiples of 25: 75, 150, 225, 275, 300, 425, 450, 475, 550, 600, 675, 825, 850, 900, 950, 1025, 1075, 1100, ... Divide them by 25: 3, 6, 9, 11, 12, 17, 18, 19, 22, 24, 27, 33, 34, 36, 38, 41, 43, 44, 48, 51, 54, 57, 59, 66, 67, 68, 72, ... and we get the original sequence. - Zak Seidov, Dec 01 2011
This sequence is closed under multiplication because A002479 is. - Jerzy R Borysowicz, Jun 13 2020

Examples

			a(1) = 3 = 1^2 + 2*1^2 is the least number that can be written as A + 2B where A, B are positive squares.
a(2) = 6 = 2^2 + 2*1^2 is the second smallest number that can be written in this way.
		

Crossrefs

Subsequence of A002479 and hence of A000408.
Cf. A155560, A338432 (triangle version of array), A339047 (multiplicities).

Programs

  • Mathematica
    f[upto_]:=Module[{max=Ceiling[Sqrt[upto-1]]},Select[Union[ First[#]^2+ 2Last[#]^2&/@Tuples[Range[13],{2}]],#<=upto&]]; f[200] (* Harvey P. Dale, Jun 17 2011 *)
  • PARI
    isA154777(n,/* use optional 2nd arg to get other analogous sequences */c=2) = { for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,200, isA154777(n) & print1(n","))

A154778 Numbers of the form a^2 + 5b^2 with positive integers a,b.

Original entry on oeis.org

6, 9, 14, 21, 24, 29, 30, 36, 41, 45, 46, 49, 54, 56, 61, 69, 70, 81, 84, 86, 89, 94, 96, 101, 105, 109, 116, 120, 126, 129, 134, 141, 144, 145, 149, 150, 161, 164, 166, 174, 180, 181, 184, 189, 196, 201, 205, 206, 214, 216, 224, 225, 229, 230, 241, 244, 245, 246
Offset: 1

Views

Author

M. F. Hasler, Jan 24 2009

Keywords

Comments

Subsequence of A020669 (which allows for a=0 and/or b=0). See there for further references. See A155560 ff for intersection of sequences of type (a^2 + k b^2).
Also, subsequence of A000408 (with 5b^2 = b^2 + (2b)^2).

Examples

			a(1) = 6 = 1^2 + 5*1^2 is the least number that can be written as A+5B where A,B are positive squares.
a(2) = 9 = 2^2 + 5*1^2 is the second smallest number that can be written in this way.
		

Crossrefs

Cf. A033205 (subsequence of primes). [From R. J. Mathar, Jan 26 2009]

Programs

  • Mathematica
    formQ[n_] := Reduce[a > 0 && b > 0 && n == a^2 + 5 b^2, {a, b}, Integers] =!= False; Select[ Range[300], formQ] (* Jean-François Alcover, Sep 20 2011 *)
    Timing[mx = 300; limx = Sqrt[mx]; limy = Sqrt[mx/5]; Select[Union[Flatten[Table[x^2 + 5 y^2, {x, limx}, {y, limy}]]], # <= mx &]] (* T. D. Noe, Sep 20 2011 *)
  • PARI
    isA154778(n,/* use optional 2nd arg to get other analogous sequences */c=5) = { for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,300, isA154778(n) & print1(n","))

A155716 Numbers of the form N = a^2 + 6b^2 for some positive integers a,b.

Original entry on oeis.org

7, 10, 15, 22, 25, 28, 31, 33, 40, 42, 49, 55, 58, 60, 63, 70, 73, 79, 87, 88, 90, 97, 100, 103, 105, 106, 112, 118, 121, 124, 127, 132, 135, 145, 150, 151, 154, 159, 160, 166, 168, 175, 177, 186, 193, 196, 198, 199, 202, 214, 217, 220, 223, 225, 231, 232, 240
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A002481 (which allows for a and b to be zero).
Primes are in A033199. - Bernard Schott, Sep 20 2019

Crossrefs

Programs

  • Mathematica
    With[{upto=240},Select[Union[#[[1]]^2+6#[[2]]^2&/@Tuples[ Range[Sqrt[ upto]], 2]],#<=upto&]] (* Harvey P. Dale, Aug 05 2016 *)
  • PARI
    isA155716(n,/* optional 2nd arg allows us to get other sequences */c=6) = { for(b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,999, isA155716(n) & print1(n","))
    
  • PARI
    upto(n) = my(res=List()); for(i=1,sqrtint(n),for(j=1, sqrtint((n - i^2) \ 6), listput(res, i^2 + 6*j^2))); listsort(res,1); res \\ David A. Corneth, Sep 18 2019

A155717 Numbers of the form N = a^2 + 7b^2 for some positive integers a,b.

Original entry on oeis.org

8, 11, 16, 23, 29, 32, 37, 43, 44, 53, 56, 64, 67, 71, 72, 77, 79, 88, 92, 99, 107, 109, 112, 113, 116, 121, 127, 128, 137, 144, 148, 149, 151, 161, 163, 172, 176, 179, 184, 191, 193, 197, 200, 203, 207, 211, 212, 224, 232, 233, 239, 253, 256, 259, 261, 263, 268
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A020670 (which allows for a and b to be zero).
If N=a^2+7*b^2 is a term then 7*N=(7*b)^2+7*a^2 is also a term. Conversely,if 7*N is a term then N is a term. Example: N=56; N/7=8 is a term, N*7=7^2+7*7^2 is a term. Sequences A154777, A092572 and A154778 have the same property with 7 replaced by prime numbers 2,3 and 5 respectively. - Jerzy R Borysowicz, May 22 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[300], Reduce[a>0 && b>0 && # == a^2 + 7b^2, {a, b}, Integers] =!= False&] (* Jean-François Alcover, Nov 17 2016 *)
  • PARI
    isA155717(n,/* optional 2nd arg allows us to get other sequences */c=7) = { for(b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,300, isA155717(n) & print1(n","))
    
  • Python
    def aupto(limit):
        cands = range(1, int(limit**.5)+2)
        nums = [a**2 + 7*b**2 for a in cands for b in cands]
        return sorted(set(k for k in nums if k <= limit))
    print(aupto(268)) # Michael S. Branicky, Aug 11 2021

A155707 Numbers expressible as a^2 + k b^2 with nonzero integers a,b, for k=2, k=3, k=5 and k=7.

Original entry on oeis.org

144, 576, 1009, 1129, 1201, 1296, 1801, 1849, 2304, 2521, 2689, 2881, 3049, 3361, 3529, 3600, 3889, 4036, 4201, 4356, 4489, 4516, 4561, 4729, 4804, 5184, 5209, 5569, 5881, 5929, 6841, 7009, 7056, 7204, 7396, 7561, 7681, 8089, 8521, 8689, 8761, 8929
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

Subsequence of A155708.

Crossrefs

Programs

  • Maple
    filter:= proc(x) local k,S;
       if numtheory:-quadres(x,3*5*7)<> 1 then return false fi;
       for k in [2,3,5,7] do
         S:= [isolve(x = a^2 + k*b^2)];
         if andmap(t -> subs(t,a*b) = 0, S) then return false fi;
       od;
       true
    end proc;
    select(filter, [$1..10000]); # Robert Israel, May 14 2025
  • PARI
    isA155707(n,/* optional 2nd arg allows us to get other sequences */c=[7, 5, 3, 2]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
    for(n=1,9999, isA155707(n) & print1(n","))

A155715 Least number expressible as a^2 + k b^2 with positive integers a,b, for each k=1,...,n.

Original entry on oeis.org

2, 17, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 7561, 7561, 21961, 32356, 32356, 32356, 44641, 44641, 349924, 349924, 349924, 349924, 1399696, 1399696, 1399696, 3027249, 3027249, 3027249, 4349601, 4349601, 18567396, 18567396, 18567396
Offset: 1

Views

Author

M. F. Hasler, Jan 27 2009

Keywords

Comments

Sequence A028372 considers primes with this property, but allowing for nonzero a,b (which obviously is irrelevant for n>2). Up to n=13, the terms of the present sequence are prime without imposing it explicitely and thus coincide with A028372 except for n=2.
a(n) > 10^9 for n >= 47. [From Donovan Johnson, Sep 29 2009]

Examples

			a(1) = 2 = 1^2 + 1^2 is the least number of the sequence A000404 (sum of positive squares). a(2) = 17 = 1^2 + 4^2 = 3^2 + 2*2^2 is the least number in sequence A000404 to be in sequence A154777 (a^2+2b^2)as well. a(3) = 73 = 3^2 + 8^2 = 1^2 + 2*6^2 = 5^2 + 3*4^2 is the least number in the intersection of sequences A000404, A154777 and A092572 (a^2+3b^2).
		

Crossrefs

Programs

  • PARI
    k=1; for( n=1,10^9, forstep( c=k,1,-1, for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & next(2));next(2)); print1(n",");k++;n--)

Extensions

a(23)-a(46) and b-file from Donovan Johnson, Sep 29 2009

A155708 Numbers expressible as a^2 + k*b^2 with nonzero integers a,b, for k=2, k=3 and k=5.

Original entry on oeis.org

36, 129, 144, 201, 241, 324, 409, 441, 489, 516, 576, 601, 769, 804, 849, 900, 921, 964, 1009, 1129, 1161, 1201, 1249, 1296, 1321, 1489, 1521, 1569, 1609, 1636, 1641, 1764, 1801, 1809, 1849, 1929, 1956, 2064, 2089, 2161, 2169, 2281, 2304, 2361, 2404, 2521
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S[2]:= {}: S[3]:= {}: S[5]:= {}:
    for a from 1 to floor(sqrt(N)) do
      for k in [2,3,5] do
        S[k]:= S[k] union {seq(a^2 + k*b^2, b = 1 .. floor(sqrt((N-a^2)/k)))}
      od
    od:
    R:= S[2] intersect S[3] intersect S[5]:
    sort(convert(R,list)); # Robert Israel, Jul 11 2018
  • PARI
    isA155708(n, /* optional 2nd arg allows us to get other sequences */c=[5, 3, 2]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
    for(n=1,9999, isA155708(n) & print1(n","))

A155712 Intersection of A092572 and A155716: N = a^2 + 3b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

7, 28, 31, 49, 63, 73, 79, 97, 100, 103, 112, 124, 127, 151, 175, 193, 196, 199, 217, 223, 241, 252, 271, 279, 292, 313, 316, 337, 343, 367, 388, 400, 409, 412, 433, 439, 441, 448, 457, 463, 484, 487, 496, 508, 511, 553, 567, 577, 601, 604, 607, 631, 657, 673
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

From Robert Israel, Jan 19 2025: (Start)
If k is a term, then so is j^2 * k for all positive integers j.
The primes in this sequence appear to be A033199.
(End)

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    A:= {seq(seq(a^2 + 3*b^2, b=1 .. floor(sqrt((N-a^2)/3))),a=1..floor(sqrt(N)))}
       intersect {seq(seq(c^2 + 6*d^2, d = 1 .. floor(sqrt((N-c^2)/6))),c=1..floor(sqrt(N)))}:
    sort(convert(A,list)); # Robert Israel, Jan 19 2025
  • PARI
    isA155712(n,/* optional 2nd arg allows to get other sequences */c=[6,3]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) && next(2)); return);1}
    for( n=1,999, isA155712(n) && print1(n",")) \\ Update to modern PARI syntax (& -> &&) by M. F. Hasler, Jan 18 2025

A155714 Least number expressible as a^2 + p b^2 with positive integers a,b, for each prime p <= prime(n) = A000040(n).

Original entry on oeis.org

3, 12, 36, 144, 144, 4356, 4356, 4356, 7056, 17424, 176400, 2547216, 2547216, 6290064, 6780816, 6780816, 6780816, 6780816, 93315600, 93315600, 271986064, 271986064, 271986064, 271986064, 271986064, 308213136, 308213136, 308213136
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(n) > 10^9 for n >= 33. [From Donovan Johnson, Sep 29 2009]

Crossrefs

Programs

  • PARI
    A155714(k,n=1) = { local(p); until( !n++, p=prime(k); until( !p=precprime(p-1), for( b=1, sqrtint((n-1)\p), issquare(n-p*b^2) & next(2)); next(2)); break);n}
    t=1; for(k=1,30, print1(t=A155714(k,t),","))

Extensions

a(12)-a(32) and b-file from Donovan Johnson, Sep 29 2009

A155574 Intersection of A154777 and A092572: N = a^2 + 2b^2 = c^2 + 3d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

12, 19, 36, 43, 48, 57, 67, 73, 76, 97, 108, 129, 139, 144, 147, 163, 171, 172, 192, 193, 201, 211, 219, 228, 241, 268, 283, 291, 292, 300, 304, 307, 313, 324, 331, 337, 361, 379, 387, 388, 409, 417, 432, 433, 441, 457, 475, 484, 489, 499, 507, 513, 516, 523
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155564 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155574(n,/* optional 2nd arg allows us to get other sequences */c=[3,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155574(n) & print1(n","))
Showing 1-10 of 16 results. Next