cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 122 results. Next

A260682 Löschian numbers (A003136) of the form 6*k+1.

Original entry on oeis.org

1, 7, 13, 19, 25, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 121, 127, 133, 139, 151, 157, 163, 169, 175, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 283, 289, 301, 307, 313, 325, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 409, 421, 427, 433, 439, 457, 463, 469, 475, 481, 487, 499
Offset: 1

Views

Author

Joerg Arndt, Nov 15 2015

Keywords

Comments

Odd terms of A202822, which lists Löschian numbers of the form 3*k+1. - Altug Alkan, Nov 15 2015

Crossrefs

Programs

  • Haskell
    a260682 n = a260682_list !! (n-1)
    a260682_list = filter ((== 1) . flip mod 6) a003136_list
    -- Reinhard Zumkeller, Nov 16 2015
  • Mathematica
    nn = 25; Select[Union[Flatten[Table[x^2 + x*y + y^2, {x, 0, nn}, {y, 0, x}]]], Mod[#, 6] == 1 && # <= nn^2&] (* Jean-François Alcover, Jul 21 2018, after T. D. Noe *)
  • PARI
    is(n)=(n%6==1)&&#bnfisintnorm(bnfinit(z^2+z+1), n);
    select(n->is(n), vector(500,j,j))
    
  • PARI
    x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%6==1, print1(n, ", "))) \\ Altug Alkan, Nov 15 2015
    
  • PARI
    isok(n) = if( n<1 || (n%3 == 0), 0, 0 != sumdiv( n, d, kronecker( -3, d))) && n%2==1;
    for(n=0, 500, if(isok(n), print1(n", "))) \\ Altug Alkan, Nov 15 2015
    
  • PARI
    list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if(t%6==1, listput(v, t)); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017
    

A364443 a(n) is the number of integers k of the form x^2 + x*y + y^2 (A003136) with n^2 < k < (n+1)^2.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 4, 5, 4, 6, 5, 6, 8, 7, 8, 7, 9, 9, 11, 10, 10, 11, 10, 13, 12, 13, 13, 13, 14, 13, 16, 16, 16, 14, 16, 17, 16, 18, 20, 19, 19, 19, 19, 21, 20, 22, 21, 21, 22, 22, 24, 25, 21, 24, 25, 24, 27, 27, 25, 29, 26, 28, 26, 27, 29, 29, 30, 28, 29, 32, 31
Offset: 0

Views

Author

Hugo Pfoertner, Aug 05 2023

Keywords

Comments

a(n) is the number of circles centered at (0,0) that pass through grid points of the hexagonal lattice that intersect the interior of an interval n < x < n+1 on the x-axis.

Crossrefs

Programs

  • PARI
    is_a003136(n) = !n || #qfbsolve(Qfb(1, 1, 1), n, 3);
    for (k=0, 75, my (k1=k^2+1, k2=k^2+2*k, m=0); for (j=k1, k2, m+=is_a003136(j)); print1(m,", "))
    
  • Python
    from sympy import factorint
    def A364443(n): return sum(1 for k in range(n**2+1,(n+1)**2) if not any(e&1 for p, e in factorint(k).items() if p % 3 == 2)) # Chai Wah Wu, Aug 07 2023

A024610 Position of n^2 in A003136.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 21, 26, 32, 37, 44, 50, 57, 66, 74, 83, 91, 101, 111, 123, 134, 145, 157, 168, 182, 195, 209, 223, 237, 252, 266, 283, 300, 317, 332, 349, 367, 384, 403, 424, 444, 464, 484, 504, 526, 547, 570, 592, 614, 637, 660, 685, 711, 733, 758, 784
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (n^2), A003136.

Extensions

More terms from Naohiro Nomoto, Nov 30 2001
Term 0 added by Ray Chandler, Jan 28 2009
Offset corrected by Sean A. Irvine, Jul 17 2019

A198726 Number of partitions of n into positive Loeschian numbers (cf. A003136).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 4, 6, 7, 9, 11, 13, 17, 21, 24, 29, 37, 42, 49, 60, 70, 82, 96, 111, 129, 152, 173, 199, 234, 266, 302, 349, 399, 451, 515, 585, 661, 752, 847, 954, 1081, 1215, 1359, 1531, 1719, 1917, 2147, 2400, 2675, 2985, 3322, 3690, 4110, 4563, 5048, 5603
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2011

Keywords

Examples

			a(10) = #{9+1, 7+3, 7+1+1+1, 4+4+1+1, 4+3+3, 4+3+1+1+1, 4+6x1, 3+3+3+1, 3+3+1+1+1+1, 3+7x1, 10x1} = 11;
a(11) = #{9+1+1, 7+4, 7+3+1, 7+1+1+1+1, 4+4+3, 4+4+1+1+1, 4+3+3+1, 4+3+4x1, 4+7x1, 3+3+3+1+1, 3+3+5x1, 3+8x1, 11x1} = 13;
a(12) = #{12, 9+3, 9+1+1+1, 7+4+1, 7+3+1+1, 7+5x1, 4+4+4, 4+4+3+1, 4+4+4x1, 4+3+3+1+1, 4+3+5x1, 4+8x1, 3+3+3+3, 3+3+3+1+1+1, 3+3+6x1, 3+9x1, 12x1} = 17.
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, list, integral)
    a198726 n = a198726_list !! n
    a198726_list = f 0 [] $ tail a003136_list where
       f u vs ws'@(w:ws) | u < w = (p' vs u) : f (u + 1) vs ws'
                         | otherwise = f u (vs ++ [w]) ws
       p' = memo2 (list integral) integral p
       p _  0 = 1
       p [] _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m
    -- Reinhard Zumkeller, Nov 16 2015, Oct 30 2011

A198727 Number of partitions of n into distinct positive Loeschian numbers (cf. A003136).

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 0, 2, 2, 1, 2, 2, 3, 4, 3, 2, 6, 6, 1, 5, 9, 6, 5, 9, 9, 9, 11, 8, 13, 17, 11, 12, 22, 19, 13, 23, 25, 22, 26, 28, 30, 37, 34, 31, 47, 45, 35, 50, 61, 52, 56, 69, 68, 76, 74, 72, 95, 100, 82, 100, 130, 112, 113, 139, 144, 149, 154, 156, 183
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2011

Keywords

Examples

			a(20) = #{19+1, 16+4, 16+3+1, 13+7, 13+4+3, 12+7+1, 12+4+3+1, 9+7+4, 9+7+3+1} = 9;
a(21) = #{21, 16+4+1, 13+7+1, 13+4+3+1, 12+9, 9+7+4+1} = 6;
a(22) = #{21+1, 19+3, 13+9, 12+9+1, 12+7+3} = 5.
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, list, integral)
    a198727 n = a198727_list !! n
    a198727_list = f 0 [] $ tail a003136_list where
       f u vs ws'@(w:ws) | u < w = (p' vs u) : f (u + 1) vs ws'
                         | otherwise = f u (vs ++ [w]) ws
       p' = memo2 (list integral) integral p
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m = if m < k then 0 else p' ks (m - k) + p' ks m
    -- Reinhard Zumkeller, Nov 16 2015, Oct 30 2011

A230656 Position of the circles with center at a lattice point that contain record numbers of lattice points, in the list of Loeschian numbers A003136.

Original entry on oeis.org

1, 2, 5, 21, 34, 186, 454, 1927, 2746, 11128, 30906, 70762, 349068, 830170, 2278644, 13219495, 27373350, 87615127
Offset: 0

Views

Author

Hugo Pfoertner, Oct 27 2013

Keywords

Examples

			a(3) = 21 because A230655(3) = A003136(21) = 49.
		

Crossrefs

Cf. A003136 (Loeschian numbers), A230655, A075880 (similar sequence for square lattice)

Formula

a(n) = k for which A230655(n) = A003136(k).

A264732 Löschian numbers (A003136) which are the sum of 2 nonzero squares.

Original entry on oeis.org

13, 25, 37, 52, 61, 73, 97, 100, 109, 117, 148, 157, 169, 181, 193, 208, 225, 229, 241, 244, 277, 289, 292, 313, 325, 333, 337, 349, 373, 388, 397, 400, 409, 421, 433, 436, 457, 468, 481, 541, 549, 577, 592, 601, 613, 625, 628, 637, 657, 661, 673, 676, 709, 724, 733
Offset: 1

Views

Author

Altug Alkan, Nov 22 2015

Keywords

Comments

n is in the sequence iff 4*n is.
If a(n) is a prime number, a(n) mod 12 = 1.
Prime terms of sequence are listed in A068228 that lists generalized cuban primes (A007645) which are the sum of 2 nonzero squares.
Also positive numbers of the form x^2 - 3*y^2 (A084916) that are the sum of 2 nonzero squares. - Frank M Jackson, Oct 13 2019

Examples

			a(1) = 13 because 13 = 3^2 + 3*1 + 1^2 = 3^2 + 2^2.
a(2) = 25 because 25 = 5^2 + 5*0 + 0^2 = 4^2 + 3^2.
a(3) = 37 because 37 = 4^2 + 4*3 + 3^2 = 6^2 + 1^2.
		

Crossrefs

Programs

A328793 Least k such that there exists an equilateral triangle of side length sqrt(A003136(n)) with vertices in an equilateral triangular array of points with k rows.

Original entry on oeis.org

2, 4, 3, 5, 4, 7, 6, 5, 8, 7, 6, 10, 9, 8, 7, 11, 10, 9, 13, 8, 11, 10, 14, 13, 9, 12, 11, 16, 15, 14, 10, 13, 12, 16, 15, 11, 14, 19, 18, 13, 17, 16, 12, 15, 20, 19, 14, 17, 13, 16, 21, 20, 19, 15, 18, 14, 22, 17, 21, 20, 16, 19, 25, 24, 15, 18, 22, 21, 17
Offset: 1

Views

Author

Peter Kagey, Oct 27 2019

Keywords

Comments

a(A024610(n) - 1) = n + 1 for all n > 0, and
a(A024610(n) + k) > n + 1 for all n > 0, k >= 0.

Examples

			For n = 2, there exists an equilateral triangle with side length sqrt(A003136(2)) = sqrt(3) and vertices on equilateral triangular array with a(2) = 4 rows:
     o
    * o
   o o *
  o * o o.
However there is no equilateral triangle of side length sqrt(3) with vertices on a smaller triangular array with three or fewer rows.
		

Crossrefs

A155563 Intersection of A001481 and A003136: N = a^2 + b^2 = c^2 + 3d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 4, 9, 13, 16, 25, 36, 37, 49, 52, 61, 64, 73, 81, 97, 100, 109, 117, 121, 144, 148, 157, 169, 181, 193, 196, 208, 225, 229, 241, 244, 256, 277, 289, 292, 313, 324, 325, 333, 337, 349, 361, 373, 388, 397, 400, 409, 421, 433, 436, 441, 457, 468, 481, 484
Offset: 1

Views

Author

M. F. Hasler, Jan 24 2009

Keywords

Comments

Contains A155561 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155563(n,/* use optional 2nd arg to get other analogous sequences */c=[3,1]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=0,500, isA155563(n) & print1(n","))
    
  • PARI
    is(n)=(n==0) || (#bnfisintnorm(bnfinit(z^2+z+1), n) && #bnfisintnorm(bnfinit(z^2+1), n));
    select(n->is(n), vector(1500,j,j-1)) \\ Joerg Arndt, Jan 11 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A155563_gen(): # generator of terms
        return filter(lambda n: all(e & 1 == 0 or (p & 3 != 3 and p % 3 < 2) for p, e in factorint(n).items()),count(0))
    A155563_list = list(islice(A155563_gen(),30)) # Chai Wah Wu, Jun 27 2022

A155564 Intersection of A002479 and A003136: N = a^2 + 2b^2 = c^2 + 3d^2 for some integers a,b,c,d.

Original entry on oeis.org

0, 1, 3, 4, 9, 12, 16, 19, 25, 27, 36, 43, 48, 49, 57, 64, 67, 73, 75, 76, 81, 97, 100, 108, 121, 129, 139, 144, 147, 163, 169, 171, 172, 192, 193, 196, 201, 211, 219, 225, 228, 241, 243, 256, 268, 283, 289, 291, 292, 300, 304, 307, 313, 324, 331, 337, 361, 363
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Contains A155574 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.

Crossrefs

Programs

  • PARI
    isA155564(n,/* use optional 2nd arg to get other analogous sequences */c=[3,2]) = { for(i=1,#c, for(b=0,sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,500, isA155564(n) & print1(n","))
Showing 1-10 of 122 results. Next